### Pott Creek II Stream Restoration Project Year 3 Monitoring Report - 2007



October 2007 Prepared By:



### **TABLE OF CONTENTS**

| EX  | ECUTIV    | E SUMMARY PROJECT ABSTRACT                              | 3  |
|-----|-----------|---------------------------------------------------------|----|
| PRO | OJECT B   | SACKGROUND .                                            | 4  |
| 2.1 | LOCA      | ATION AND SETTING                                       | 4  |
| 2.2 | STRU      | JCTURE AND OBJECTIVES                                   | 4  |
| 2.3 | PROJ      | IECT HISTORY AND BACKGROUND                             | 5  |
| PRO | OJECT C   | CONDITON AND MONITORING RESULTS                         | 7  |
| 3.1 | VEGI      | ETATION ASSESSMENT                                      | 7  |
|     |           | Soil Data                                               | 7  |
|     | 3.1.2     | Vegetative Problem Areas                                | 7  |
|     |           | Stem Counts                                             | 7  |
|     | 3.1.4     | <u>Vegetation Assessment Summary</u>                    | 9  |
| 3.2 | CHA       | NNEL STABILITY ASSESSMENT                               | 9  |
|     | 3.2.1     | Cross Sections                                          | 9  |
|     | 3.2.2     | Bank Full Events                                        | 11 |
|     |           | <u>Longitudinal Profiles</u>                            | 12 |
|     |           | <b>Channel Stability Problem areas</b>                  | 14 |
|     |           | Other Problems                                          | 14 |
|     | 3.2.6     | <b>Channel Stability Assessment Summary</b>             | 14 |
|     |           | TABLES                                                  |    |
| Tab | ole I.    | Project Deliverables                                    | 5  |
| Tab | ole II.   | Project Activity and Reporting History                  | 5  |
| Tab | ole III.  | Project Contacts                                        | 6  |
| Tab | ole IV.   | Project Background                                      | 6  |
|     | ole V.    | Preliminary Soil Data                                   | 7  |
|     | ole VI.   | <b>Approximate Number of Planted Species</b>            | 8  |
|     | ole VII.  | Stems Counts for Live, Stressed, and Volunteers Species | 8  |
|     | ole VIII. | Combined Totals for Stem Count                          | 9  |
| Tah | ole IX.   | Verification of Bankfull Events                         | 11 |

### **APPENDICES**

APPENDIX A. Vegetation Raw Data

Vegetation Raw Data Vegetation Monitoring Plot Photos

**APPENDIX B.** Cross Sections

**Data Plots and Tables Photos** 

**APPENDIX** C. Bank Full Events

**Photo Log** 

APPENDIX D. Profile Raw Data

Data Tables Pebble Count Graphs

**APPENDIX E. Structures and Problem Areas** 

**Photo Log** 

### 1.0 EXECUTIVE SUMMARY/PROJECT ABSTRACT

On behalf of the North Carolina Department of Transportation (NCDOT), Mid-Atlantic Mitigation, LLC (MAM) with technical assistance from Mulkey Engineers and Consultants (Mulkey) restored 10,054 linear feet of stream that was severely degraded due to past channelization, removal and ongoing clearing and maintenance of the riparian buffer, and continuous cattle grazing. Construction of the project began in October 2004 and was completed in April 2005. The Pott Creek II Stream Restoration Project will provide NCDOT with 10,054 Stream Mitigation Units (SMUs).

The project goals are to provide a stable network of stream channels that neither aggrade nor degrade while maintaining their dimension, pattern, and profile with the capacity to transport the watershed's water and sediment load. The objective of the restoration plan is to restore the primary stream function and values associated with nutrient removal and transformation, sediment retention, flood-flow attenuation, wildlife (both aquatic and terrestrial) habitat, and also to provide restoration of riparian zones that have been historically used for pasture. Ultimately, the Pott Creek II site will improve the overall downstream water quality by reducing the amount of sediment being produced by bank erosion and increased scour and will also improve fish and aquatic habitat by providing both natural material stabilization structures (rootwads, rock vanes, and riparian buffer) and by reducing the silt and clay fines in the streambed. Additional water quality benefits will be generated by removing cattle from the riparian corridor. Degraded agricultural/pasture wetlands and existing bottomland hardwood wetlands on site will be preserved.

Pott Creek enters from the north and runs the entire length of the project crossing under Paint Shop Road and continuing south. Unnamed Tributary 1 (UT 1) enters from the west and had been heavily degraded by cattle traffic and grazing. UT2, UT3, and UT5 enter from the east and were severely entrenched. UT 4 enters from the west, south of the confluence of Pott Creek and Rhodes Mill Creek, and was also severely degraded by cattle traffic and grazing and also showed evidence of past channelization.

Approximately, 7209 linear feet of the channel on Pott Creek was restored and relocated consistent with C-type stream channels, approximately 1827 linear feet of channel was restored on the perennial tributaries, and approximately 1018 linear feet of channel on Rhodes Mill Creek were restored by construction of a channel with proper dimension, pattern, and profile.

The streams and vegetation will be monitored annually for five years (October 2005 thru October 2009) by Mid-Atlantic Mitigation LLC (a division of EarthMark Mitigation Services) and the monitoring report will be submitted to NCEEP/NCDOT by the end of the calendar year. Ten 50' by 50' and one 100' by 25' permanent vegetative plots were established on-site. Survivability within these plots will help determine the success of the project. Six permanent cross-sections throughout Pott Creek, two throughout Rhodes Mill Creek, and one on unnamed tributaries 1 thru 4 were established. Cross-sections will document changes in dimension, pattern and profile of the restored stream(s).

Approximately 3000 linear feet of longitudinal profiles have been established throughout the project and will monitor the riffle-run-pool-glide sequences and overall stability of the restored stream(s). Within the profiles pebble counts will be performed to monitor any unacceptable increase in sand and finer substrate. All cross-sections and longitudinal profile sections are noted on the As-built plans included in the previously submitted Mitigation Plan and Year 1 Monitoring Reports.

The third year monitoring was completed on October 19th, 2007. The vegetation in all of the plots continues to meet and/or exceed the requirements. Limited noxious species were found in some areas and will be monitored and treated if necessary, more detailed information is included in Section 3.1.2.

### 2.0 PROJECT BACKGROUND

### 2.1 LOCATION AND SETTING

The Pott Creek II Stream Restoration Project is located in Catawba County approximately five miles west of Maiden and eight miles southwest of Newton, North Carolina. It is located approximately one mile west of the intersection of the Hickory-Lincolnton Hwy and Paint Shop Road on either side of Paint Shop Road.

The Pott Creek II Stream Restoration Project lies in the South Fork Catawba River Basin and in the US Geologic Survey (USGS) Hydrologic Unit Code (HUC) 03050102.

The restoration project is being managed and monitored by Mid-Atlantic Mitigation, LLC.

### 2.2 STRUCTURE AND OBJECTIVES

The restoration of Pott Creek utilized a combination of natural channel design methodologies with limited soil bio-engineering applications and methods consistent with a Rosgen Priority Level II-type restoration along Pott Creek and Rhodes Mill Creek. Level II restoration involved constructing a new channel at the existing elevation. Pott Creek was constructed to the west of the existing channel and Rhodes Mill Creek was constructed to the north of the existing channel. A Priority Level I restoration (reconnecting the channel to its historical floodplain) was not feasible due to limited relief across the site and controlling outfall and inflow elevations. Advantages of the Priority II restoration include a decrease in bank height and improved stream pattern geometry resulting in reduced streambank erosion, establishment of riparian vegetation to help stabilize the banks, establishment of a floodplain to help remove stress from the channel during flood events, improvement of aquatic habitat, abatement of wide-scale flooding of original land surface, and reduction of sediment and easier downstream grade transition. The Level II restoration, over time, will stabilize pattern and the channel profile, reduce overall shear, restore natural dimension, and reduce sedimentation. A Priority Level I restoration was utilized on the largest tributary, UT 1 of the five tributaries. Level I restoration is advantageous because it promotes re-connection to the

floodplain and a stable channel. It also reduces bank height and streambank erosion, reduces overall land loss, decreases sediment, and raises the water table. The slope of the new channel was reduced until its bankfull elevation was consistent with the adjacent floodplain on either side.

### 2.3 PROJECT HISTORY AND BACKGROUND

**Table I. Project Deliverables** 

| Mitigation Type                                     | Linear | SMU      |
|-----------------------------------------------------|--------|----------|
|                                                     | Feet   | Formula  |
| Stream Restoration (Pott Creek main channel)        | 7209.0 | 7209.0   |
| Stream Enhancement –Category I (Pott Creek main     | 0      | 0        |
| channel)                                            |        |          |
| Stream Restoration (Rhodes Mill Creek)              | 1018.0 | 1018.0   |
| Stream Restoration (Pott Creek unnamed tributaries) | 1827.0 | 1827.0   |
| TOTALS                                              |        | 10,054.0 |

Table II. Project Activity and Reporting History

| Activity or Report              | Calendar Year of Completion or<br>Planned Completion | Actual<br>Completion<br>Date |  |  |
|---------------------------------|------------------------------------------------------|------------------------------|--|--|
| Restoration Plan                | March 2004                                           | September 2004               |  |  |
| Construction                    | *August 2004                                         | April 2005                   |  |  |
| Temporary and Permanent seeding | August 2004                                          | April 2005                   |  |  |
| Bareroot Plantings              | October 2004                                         | February 2005                |  |  |
| Mitigation Plan                 | November 2004                                        | June 2005                    |  |  |
| Year 1 Monitoring               | December 2004                                        | October 2005                 |  |  |
| Year 2 Monitoring               | October 2006                                         | October 2006                 |  |  |
| Year 3 Monitoring               | October 2007                                         | October 2007                 |  |  |
| Year 4 Monitoring               | October 2008                                         |                              |  |  |
| Year 5 Monitoring               | October 2009                                         |                              |  |  |

<sup>\*</sup> By contract amendment the planned completion date was extended until April 2005

**Table III. Project Contacts** 

| Table III. Troject Contacts         |                                |
|-------------------------------------|--------------------------------|
| Project Manager                     |                                |
| Mid-Atlantic Mitigation, LLC        | 1960 Derita Road               |
|                                     | Concord, NC 28027              |
|                                     | Rich Mogensen (704) 782-4133   |
| Designer                            |                                |
| Mulkey Engineers and Consultants    | 6750 Tryon Road                |
|                                     | Raleigh, NC 27511              |
|                                     |                                |
| Construction Contractor             |                                |
| Shamrock Environmental Corporation  | P.O Box 14987                  |
| _                                   | Browns Summit, NC 27214        |
|                                     |                                |
| Planting & Seeding Contractor       |                                |
| Mid-Atlantic Mitigation, LLC        | 1960 Derita Road               |
|                                     | Concord, NC 28027              |
|                                     | Kristy Rodrigue (704) 782-6257 |
| Seed mixes provided by IKEX         |                                |
| Nursery Stock provided by NC Forest |                                |
| Service; Mellow Marsh Farm; and     |                                |
| Pinelands Nursery & Supply          |                                |
| Monitoring Performers               |                                |
| Mid-Atlantic Mitigation, LLC        | 1960 Derita Road               |
|                                     | Concord, North Carolina 28027  |
|                                     | Christine Cook (704) 782-4140  |

Table IV. Project Background

| Project Background Table                  |                                       |  |  |  |  |  |  |  |
|-------------------------------------------|---------------------------------------|--|--|--|--|--|--|--|
| Project County                            | Catawba                               |  |  |  |  |  |  |  |
| Drainage Area                             | 19.7 square miles                     |  |  |  |  |  |  |  |
| Drainage Cover Estimate (%)               | 3%                                    |  |  |  |  |  |  |  |
| Physiographic Region                      | Piedmont                              |  |  |  |  |  |  |  |
| Ecoregion                                 | 45a Southern Inner Piedmont           |  |  |  |  |  |  |  |
| Wetland Type                              | Piedmont Bottomland Forest / Piedmont |  |  |  |  |  |  |  |
|                                           | Swamp Forest                          |  |  |  |  |  |  |  |
| Cowardin Classification                   | PSS1A, PFO1A                          |  |  |  |  |  |  |  |
| Dominant soil types                       | Chewacla (Wehadkee) Congaree          |  |  |  |  |  |  |  |
| Reference site ID                         | UT to Fourth Creek                    |  |  |  |  |  |  |  |
| USGS HUC for Project and Reference        | 03050102/ 03050101                    |  |  |  |  |  |  |  |
| NCDWQ Sub-basin for Project and Reference | 03-08-35/ 03-08-32                    |  |  |  |  |  |  |  |
| % of project easement fenced              | 30 – no cattle is present on adjacent |  |  |  |  |  |  |  |

### 3.0 PROJECT CONDITION AND MONITORING RESULTS

### 3.1 VEGETATION ASSESSMENT

### 3.1.1 Soil Data

Table V. Preliminary Soil Data

| Series   | Max Depth<br>(in) | % Clay on Surface | K   | Т | OM<br>% |
|----------|-------------------|-------------------|-----|---|---------|
| Chewacla | 60                | 10-27             | .28 | 5 | 1-4     |
| Wehadkee | 61                | 15-40             | .32 | 5 | 2-5     |
| Congaree | 62                | 10-25             | .37 | 5 | < 4     |

### 3.1.2 Vegetative Problem Areas

Mutiflora Rose and Rhubus sp occur in some areas of the project, primarily in Zone 2 (flood plain). Neither species has taken control or out-competed the planted woody vegetation. The primary area of concern is along the left bank of UT1. MAM plans to watch this area closely and spray with Round-up (Glyphosate) in the spring, as necessary. Chinese privet is also found bordering some of the project and is found in the large adjacent wetland preservation areas, but has not invaded the stream restoration areas from adjacent properties. A small amount (one or two stems) was found in several plots. This is in line with last years' (2006) observations and does not indicate an increase in the amount of privet in the project area. Privet growing in the project area will be closely monitored and sprayed with Round-up in the spring, if necessary. As will be documented below, the planted species and healthy volunteer communities are doing well and are not currently under any threat of being out-competed by any invasive species on site.

### 3.1.3 Stem Counts

Two Planting Zones were established at the Pott Creek II Restoration Project. Zone 1 which consisted of mainly livestakes and Zone 2 which consisted of Bareroot Seedlings and Tublings. Eleven permanent vegetative plots have been established at random locations, which sample both Zones 1 and 2. All vegetative plots are 2,500 square feet in size, vegetative plots 1-4, and 6-11 are all 50 foot by 50 foot squares, while vegetative plot 5 is a 100 foot by 25 foot rectangle due to limited space along UT1. Living woody stems were counted in each plot and analyzed for species diversity and survival. Overall coverage of each plot for herbaceous and woody species has exceeded 75% in all plots and throughout the project, this is documented by the vegetation photolog (Appendix A). Volunteers and/or invasive species were noted, but were not figured into the final stem count.

On September 27 - 28, 2007, the third year-vegetative monitoring was performed on the established vegetative plots.

Table VI. Approximate number of Planted species

| Planted Species           | <b>Bareroot Seedling</b> | Tublings | Livestakes |
|---------------------------|--------------------------|----------|------------|
| Quercus nigra             | 2,000                    |          |            |
| Quercus phellos           | 2,000                    | 1,000    |            |
| Quercus palustris         | 2,000                    | 1,000    |            |
| Quercus bicolor           |                          | 1,000    |            |
| Quercus lyrata            | 2,500                    |          |            |
| Fraxinus pennsylvanica    | 2,000                    |          |            |
| Platanus occidentalis     | 1,000                    |          | 1,000      |
| Celtis laevigata          | 1,050                    |          |            |
| Diospyros virginiana      | 200                      |          |            |
| Cornus amomum             | 1,000                    | 1,000    | 3,000      |
| Lindera benzoin           | 1,500                    |          |            |
| Betula nigra              | 1,000                    |          | 400        |
| Cephalanthus occidentalis | 525                      |          |            |
| Salix nigra               |                          |          | 3,000      |
| Salix sericea             |                          |          | 600        |
| Sambucus canadensis       |                          |          | 1,025      |
|                           | 16,775                   | 4,000    | 9,025      |

**Total Planted Species= 20,775 Total Livestakes planted= 9,025** 

Table VII. Stems Counts for Live, Stressed, and Volunteers species

|                           | Plot |       |
|---------------------------|------|------|------|------|------|------|------|------|------|------|------|-------|
|                           | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | Total |
| Total Live Planted        | 25   | 11   | 23   | 27   | 20   | 29   | 21   | 58   | 34   | 34   | 16   | 298   |
| Volunteers                | 7    | 9    | 4    | 5    | 3    | 2    | 10   | 4    | 1    | 4    | 9    | 58    |
| Number "Stressed"         | 3    | 2    | 0    | 2    | 1    | 2    | 5    | 3    | 2    | 1    | 1    | 22    |
|                           |      |      |      |      |      |      |      |      |      |      |      |       |
| Percent Survival          | 86%  | 31%  | 64%  | 51%  | 74%  | 81%  | 50%  | 52%  | 41%  | 57%  | 46%  | 54%   |
| Percent "Stressed"        | 12%  | 18%  | 0%   | 7%   | 5%   | 7%   | 24%  | 5%   | 6%   | 3%   | 6%   | 7%    |
| Stems per acre (w/o Vols) | 435  | 191  | 400  | 470  | 348  | 505  | 365  | 1010 | 592  | 592  | 278  |       |
| Number of Species         | 8    | 8    | 11   | 9    | 9    | 8    | 8    | 9    | 8    | 9    | 9    |       |
| Number of Planted Species | 8    | 8    | 9    | 7    | 8    | 7    | 7    | 9    | 7    | 9    | 8    |       |

### 3.1.4 **Vegetation Assessment Summary**

Vegetation success will be defined as tree survival to meet 320 stems per acre after 3 years and 260 stems per acre after 5 years inside the permanent vegetative plots and herbaceous cover evaluated with photos showing 75% coverage, after 5 years.

Table VIII. Combined Totals for Stem Count

| Combined Totals               |     |
|-------------------------------|-----|
| Percent Survival              | 54  |
| Percent "Stressed"            | 7   |
| Stems Per Acre w/o volunteers | 472 |
| Number of Species Counted     | 16  |
| Total Planted Species Counted | 13  |

The mortality rates for both the first and second monitoring years were approximately 10%, however this year showed an increase to approximately 27%, this is most likely due to the exceptionally dry conditions of this growing season. The community continues to be very diverse and rich with healthy volunteers. Plot 11, along Rhodes Mill, was below the Year 3 goal of 320 stems per acre, but still exceeded the final goal of 260 stems per acre, with 278 stems per acre. Plot 2 is below the final goal at 191 stems per acre. Despite 2 of the 11 plots showing high mortality, stems per acre overall, more than compensates. The site as a whole shows an average of 472 stems per acre, which exceeds both the 3 and 5 year goals and demonstrates only 54 percent survival.

In Appendix A, the vegetative survey data tables show the actual counts of each species found per plot, severely stressed but not dead plants were noted. The herbaceous cover plant community has not changed significantly over the last three years.

### 3.2 CHANNEL STABILITY ASSESSMENT

### 3.2.1 Cross Sections

There are six permanent cross-sections throughout Pott Creek (four on the upstream side of the bridge and two on the downstream side). Cross-sections on Pott Creek are 50% riffles and 50% pools. There are two permanent cross-sections on Rhodes Mill Creek, one riffle, one pool; and one cross section on each of the unnamed tributaries (1 thru 4). Each permanent cross-section is shown on the as-built plan and will be surveyed each year to monitor changes in the dimension of the restored stream(s), photographic documentation of each cross-section will also be made.

Cross-sections were surveyed on October 18<sup>th</sup> & 19th, 2007 by the MAM staff. The 2005 survey was completed with a 2 man (MAM Staff) crew using rented traditional survey equipment. The 2006 survey was done with a 3 man crew, including a PLS, using a robotic total station. Some cross section irons were reset, when the original iron could not be found, these were Cross-Sections 3 and 4. The 2007 survey was done by a 2 and 3

man crew with a tape line strung from rebar set in each bank of the cross section and using an auto laser level. All cross-section irons were found except for Cross-Section 6, which was temporarily reset. This winter MAM staff will attempt to find one of the 2 original irons and remark it's location for future surveys. Visual observation suggests that all of the surveyed cross sections are stable and well vegetated, except for large fluctuations in the amounts of sand deposited in all areas of the stream channel. Appendix B has the cross-section data tables, plots and photos.

### Pott Creek CS1 (Riffle)

Sand deposition causes slight fluctuations in bed and bank elevations, but does not appear significant. Photos show this area as being well vegetated and stable. The thalweg appears left of center. For conditions of the riffle itself see section 3.2.3 and Appendix D.

### Pott Creek CS2 (Riffle)

There appears to be no significant differences between the year 1 and year 3 surveys, deposition has allowed vegetation to take root on the island/point bar right of center. Photos show this area as being well vegetated and stable. Point bars are a natural feature of sandy piedmont streams. For conditions of the riffle itself see section 3.2.3 and Appendix D.

### Pott Creek CS3 (Pool)

Sand has continued to settle into this pool area. The depth of the pool has decreased by approximately two feet. Photos show this area as being well vegetated and stable. This is a dynamic system with much sand being passed through during larger storm events.

### Pott Creek CS4 (Pool)

Sand has continued to settle into this pool area, however changes between the 2006 and 2007 survey are not significant. The depth of the pool has decreased by approximately two feet and the thalwag seems to shift from year to year. Photos show this area as being well vegetated and stable. This is a dynamic system with much sand being passed through during storm events. Some fluctuations in elevation on the banks all appear to be due to variability in vegetation from year to year.

### Pott Creek CS5 (Riffle)

Photos show this area as being well vegetated and stable. A sand bar has formed and stabilized with vegetation on the right side of the channel.

### Pott Creek CS6 (Pool)

Photos show this area as being well vegetated and stable. Direct observation made while wading this cross-section indicates the pool depth has decreased by approximately 2 to 3 feet. The left bank iron was not located this year, therefore the 2007 cross section maybe slightly off line from 2005 and 2006. Every effort will be made to find this iron this winter and remark to be more easily found in 2008.

### UT 1 CSa

Fluctuations in elevations on the small tributaries appears to have more to do with variations in vegetation from year to year, however there is some indication of silt deposition on all of the UTs particularly, UT 4. There appear to be no significant changes to the cross-sections on any of the UTs.

### UT 2 CSb

Fluctuations in depths on the small tributaries appears to have more to do with variations in vegetation from year to year, however there is some indication of silt deposition on all of the UTs particularly, UT 4. There appear to be no significant changes to the cross-sections on any of the UTs.

### UT 3 CSc

Fluctuations in depths on the small tributaries appears to have more to do with variations in vegetation from year to year, however there is some indication of silt deposition on all of the UTs particularly, UT 4. There appear to be no significant changes to the cross-sections on any of the UTs.

### UT 4 CSd

Fluctuations in depths on the small tributaries appears to have more to do with variations in vegetation from year to year, however there is some indication of silt deposition on all of the UTs particularly, UT 4. There appear to be no significant changes to the cross-sections on any of the UTs.

### **Rhodes Mill CS1 (Pool)**

Photos show this area as being well vegetated and stable, except for the slight undercut which appears to be forming in the left bank. MAM does not feel this area presents a significant problem at this time, the change from the 2005 survey is very slight and the area will be monitored. The 2006 survey seems to suggest that sand may have been deposited on the bank during 2006, and washed away again in 2007.

### **Rhodes Mill CS2 (Riffle)**

Photos show this area as being well vegetated and stable. There are no significant changes to this cross-section, since 2006.

### 3.2.2 Bank Full Events

At least 1 bank full event per monitoring season will be photo documented, ideally two. A crest-stage gage was installed on August 24, 2006 to track bank full events between site visits. During this monitoring period only one bank full event was documented. Photo Documentation and descriptions are located in Appendix C.

| Table IX. Verification of Bankfull Events |                                        |                  |                        |  |  |  |  |  |  |
|-------------------------------------------|----------------------------------------|------------------|------------------------|--|--|--|--|--|--|
| Date of Collection                        | Date of Occurrence                     | Method           | Photo # (if available) |  |  |  |  |  |  |
| February 15, 2007                         | February 13 <sup>th</sup> & 14th, 2007 | Crest Stage Gage | Appendix C             |  |  |  |  |  |  |

The site was visited and showed signs of over-bank flow, rack lines and drift debris, but no signs of severe damage or erosion caused by the event. The Crest Stage gage was checked on February 15, 2007 and documented a bank full event. According to rainfall data from both Lincolnton and Hickory significant rainfall came through the area within 5 days of the site visit. A rainfall event immediately preceding the site visit on February 13<sup>th</sup> and 14<sup>th</sup>, 2007 generated approximately 1.5 inches of rain fall and a similar event was recorded by the SCO (State Climate Office) on January 1<sup>st</sup>, 2007 with an average of 1.25 inches of rainfall between the Lincolnton and Hickory areas.

### 3.2.3 **Longitudinal Profiles**

Profiles were done on approximately 3000 linear feet over the entire project, Pott Creek 1000 lf; Rhodes Mill 400 lf; UT1 650 lf; UT2 350 lf, UT3 480 lf; and UT4 350 lf. Pebble counts were done on all constructed riffles and any naturally forming riffles with significant build up of bed material within the profile reach. Lengths and spacing of the riffle-run-pool-glide (R-R-P-G) sequence were measured where they existed, each profile reach was observed for stability and vegetative cover, making note of any signs of erosion. Raw data, data tables, and graphs of the Pebble Count data are available in Appendix D. The following observations were made in each profile section:

**Pott Creek** – 1000 foot profile: No significant erosion problems were noted inside the profile reach. A few macro-invertebrates were found while sampling (stone flies, may flies and several snails). There are two constructed riffles inside profile limits, a pebble count was done on each. There are also several naturally forming riffles, but no significant bed material has accumulated so no pebble counts were done. This reach carries a significant bed load of sand and the naturally forming sand riffles appear to be remaining relatively stable. Both constructed riffles, Riffle 1 and Riffle 2, show no signs of significant fining or embedding, with annual graphs continuing to look similar and actually showing a reduction in fine sand. Stable sand bars are present in several of the riffles above UT 1, not just within the Profile limits. The significant bed load of sand carried in Pott Creek has the greatest effect on the pool areas. Pools may be shorter in overall length, but deep areas remain stable with excess sand accumulating in the run and glide sections of the stream channel. This is the upper most segment of the project where most sand and silt washes in from upstream of the project during high flow events settles out. With that in mind, this section of the project is in excellent condition.

Rhodes Mill Creek – 400 foot Profile: There are two areas of minor concern within the profile reach. The right bank associated with Pool 1 has developed a slight under cut, however the area has remained stable through out the growing season and is currently well vegetated. This feature also creates a unique area of pool habitat within the profile reach. The lower log vane which is associated with constructed Riffle 3 has continued to erode on the right bank despite live-staking efforts. The log structure has become completely exposed on the right side and the stream flows around the log structure on the right. This area will continue to be monitored. Pebble counts were repeated on all riffles

within the profile limits. A few macro-invertebrates were found while sampling (including crawling water beetles, may flies and several snails). Riffle 1 contains a narrow island approximately one foot from the right bank, this area is stable and the Pebble count shows no significant fining or embedding and continued evidence of smaller substrate being moved downstream. Riffle 2 was very narrow at the time of sampling due to low water conditions that were the most severe ever observed on site since completion. Excellent substrate was present on the sand bar area on the left side of the channel, but only substrate in the water was sampled. The Pebble Count does not show evidence of any significant fining or embedding and appears overall to be the most stable of the four areas sampled. The area of Riffles 3 and 4 have fluctuated during the last 3 years of monitoring. Riffle 3 now exhibits only sand as substrate and Riffle 4 appears to have retained the Riffle 3 substrate as it has migrated downstream, therefore (for pebble count sampling purposes, the distinction between the two riffles is not clear and what was sampled in 2006 as Riffle 3 was sampled this year as Riffle 4. The graphs of 2006 and 2007 are comparable and do not indicate any significant fining or embedding. In 2006, a pebble count was done on a natural riffle (Riffle 5) that has accumulated larger bed material at the lower limit of the profile. This riffle appears to be comprised of bed material washed down from upstream. Riffle 5 was sampled again this year and shows a significant increase in substrate size, and no significant evidence of fining or embedding. It was obvious after the 2005 monitoring report that the riffles on Rhodes Mill Creek were constructed with stone which is not large enough to withstand the actual high flows this stream experiences, however the stream itself continues to stabilize and is in overall good condition.

**UT1** – 600 foot Profile: In the fall of 2006 thick vegetation in and around the UTs made observations all but impossible. 2007 monitoring of the unnamed tributaries was done on April 18<sup>th</sup> before overgrowth of vegetation could prevent useful observation. This stream is the largest and most active of all the UT's, but contains no defined substrate other then sand and silt. 2007 observations show the bed to be mostly sand and to have no evidence of any permanent vegetative growth in the stream bed. One small section of the left bank, which was noted in the 2005 report and live-staked in 2006 has once again sloughed off and will need to be live-staked again, this area represents approximately 3 feet of the more than 600 feet of UT1, and is therefore not a significant problem.

UT2 – 350 foot Profile: UT2 shows very little bed form diversity, with some sandy substrate, but a mostly mud/muck bottom, which may allow annuals like polygonum an opportunity to grow on the stream bottom during dryer conditions, but there is no evidence of that happening so far this spring. UT2 has one approximately 3 foot (out of 350 feet; < 1% cover) section where some cattails are growing in the stream but are not blocking stream flow. UT2 also has a well developed *juncus effuses* population along the banks, the plants are providing shade for the streambed but are not blocking stream flow or growing directly in the streambed.

**UT3** – 480 foot Profile: UT3 also shows very little bed form diversity, with some sandy substrate, but a mostly mud/muck bottom, which may allow annuals like polygonum an opportunity to grow on the stream bottom during dryer conditions, but there is no

evidence of that happening so far this spring. UT3 has developed a much larger population of cattails (approximately 40 feet, non-contiguous of 480 feet; about 8% cover) and while they are not blocking stream flow they are creating some of the better habitat along these small streams, they will be monitored and controlled if necessary.

**UT 4-** 350 foot Profile: UT4 also has very little bed form diversity and its substrate is entirely red mud. There is one small section (approximately 4 feet out of 350; slightly over 1% cover) where grass has grown in a shallow area of the stream bed, but is not significant at this time.

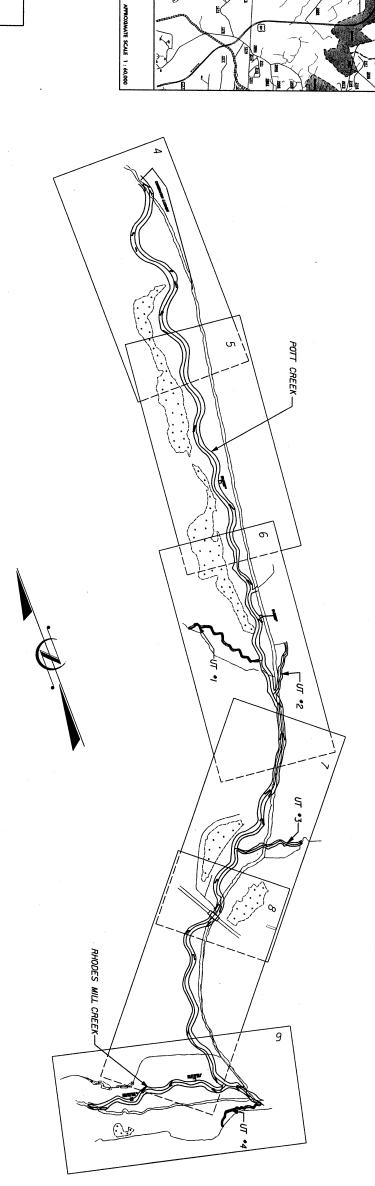
### 3.2.4 Channel Stability Problem Areas

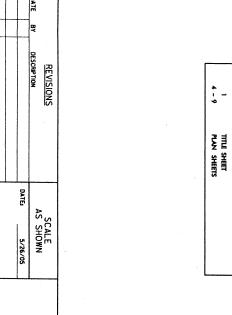
All structures marked on the as-built plan were photographed and assessed for structural failures and erosion problems, also the entire length of Pott Creek, Rhodes Mill, and all of the UT's were walked and any significant problem areas were photographed and documented. This Photo Log with comments on each structure and problem area is available in Appendix E. All problem areas were deemed to be minor at this time and will be live staked this winter, as necessary. Areas directly under the bridge in the DOT ROW outside of the easement continue to be bare but have not suffered significant additional erosion since the initial event in October of 2005. The area directly under the bridge still needs to be stabilized by the NCDOT (it is not in the conservation easement area), if the bridge is not scheduled for replacement in the near future.

### 3.2.5 Other Problems

The on going beaver issue is being actively addressed. The site was inspected by a beaver trapper/contractor earlier this year and this event was documented and an update was submitted at that time. Since that time, beaver have returned to the site and beaver activity has been monitored. Thus far damage to vegetation on the site is within tolerable limits. Starting below the confluence of UT2 high water levels affect an approximately 3 foot section of the lower bank by not allowing herbaceous vegetation to establish. All structures below this point were under water until the large dam below the bridge was removed, conditions before and after dam removal were documented in the photo log. The beaver contractor will be removing the beaver population this winter, and the beaver population will be controlled and monitored for the remainder of the monitoring period.

### 3.2.6 Channel Stability Assessment Summary


Overall, with respect to the major over bank events since restoration was completed the site is in excellent condition and is weathering all over bank events well. The site appears very stable and problem areas within the restored reach comprise less than 5% of the overall length of the project. The problem area on Rhodes Mill where the log structure has been eroded out from the right bank will be addressed this year. If necessary, the strategy will be to remove the log structure all together and stabilize both banks accordingly.


## CATAWBA COUNTY

# POTT CREEK II STREAM RESTORATION PROJECT

LOCATION: POTT CREEK II RESTORATION SITE NORTH & SOUTH OF SR 2023 (PAINT SHOP ROAD) WEST OF MAIDEN, NORTH CAROLINA

### AS BUILT PLANS





SHEET NUMBER

INDEX OF SHEETS

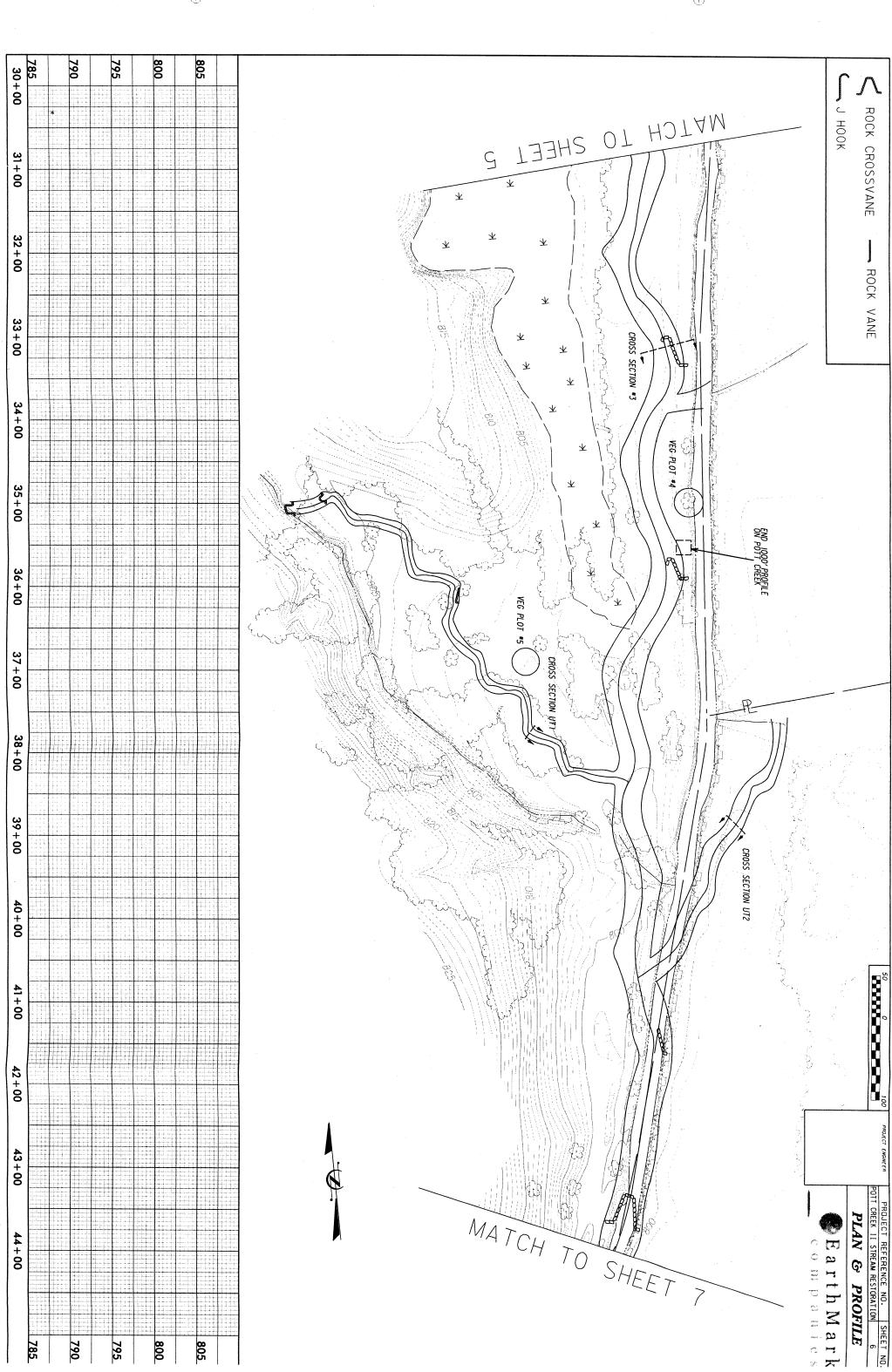
VICINITY MAP

PROJECT MANAGER RICHARD K. MOGENSEN, PWS

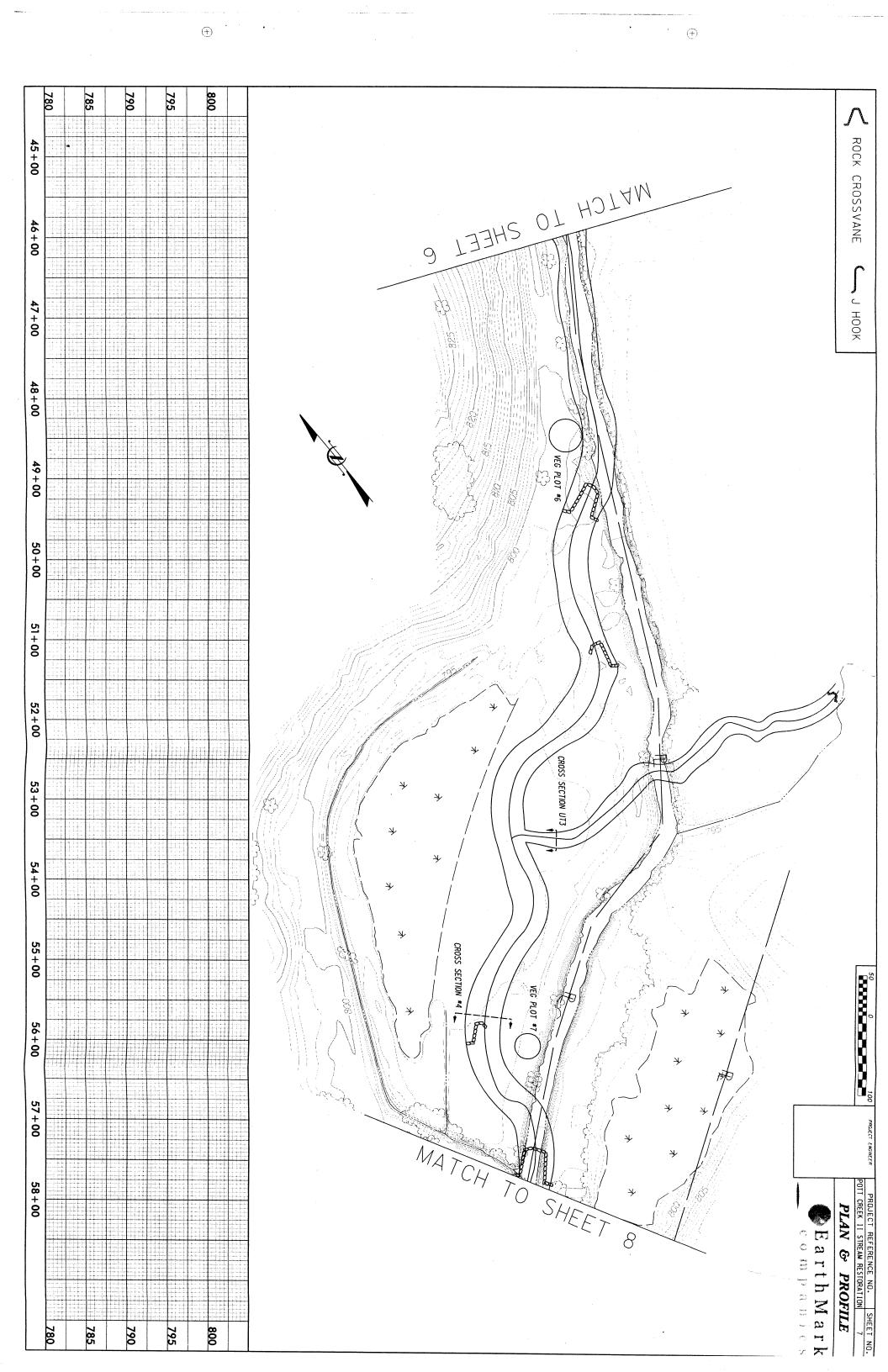
Earth Mark companies

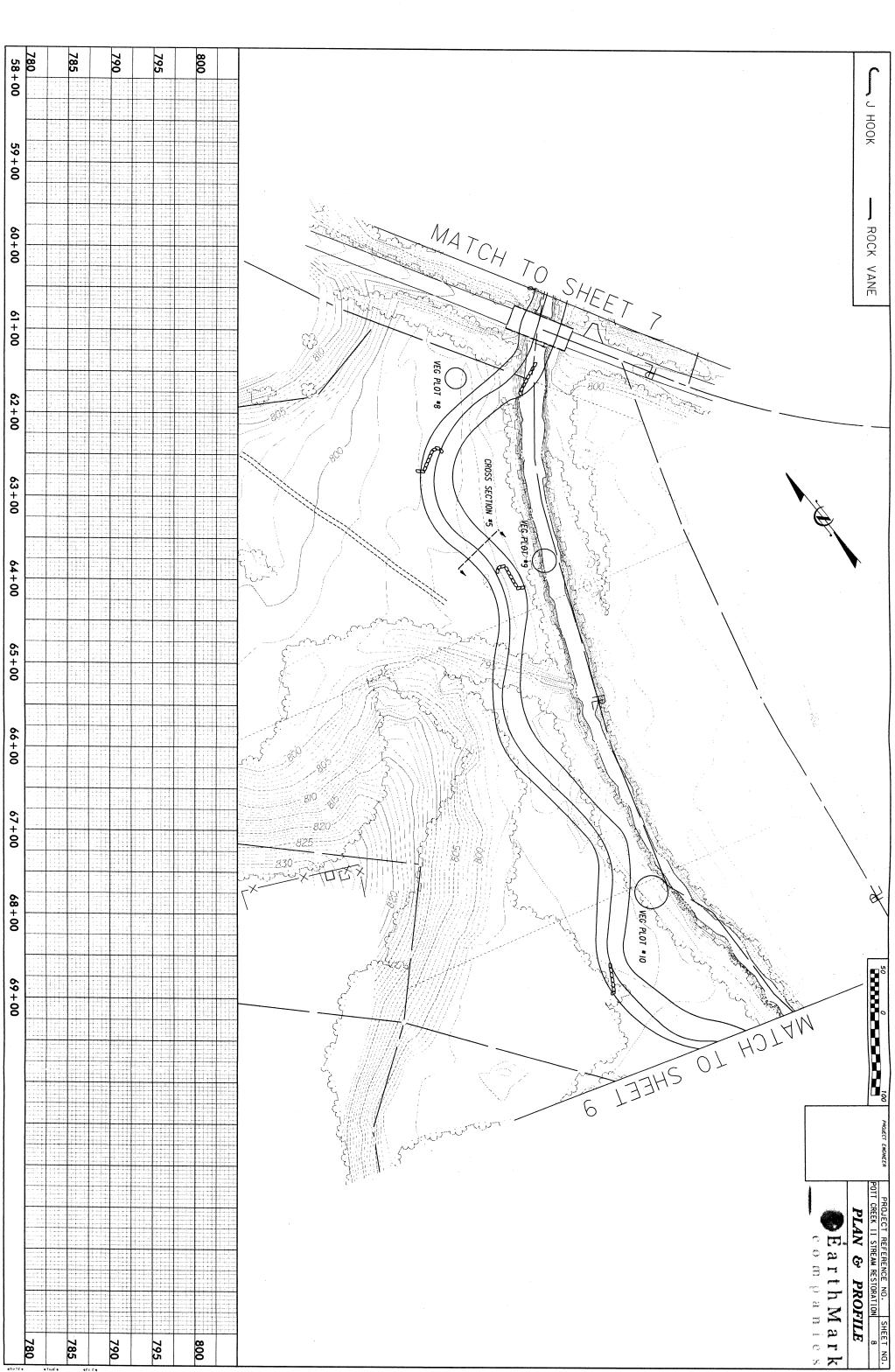
EARTHMARK COMPANIES
9301 AVIATION BOULEVARD
SUITE CEI
CONCORD, NC 28027
(704) 782-4133

TITLE SHEET PLANS PREPARED FOR


SHEET

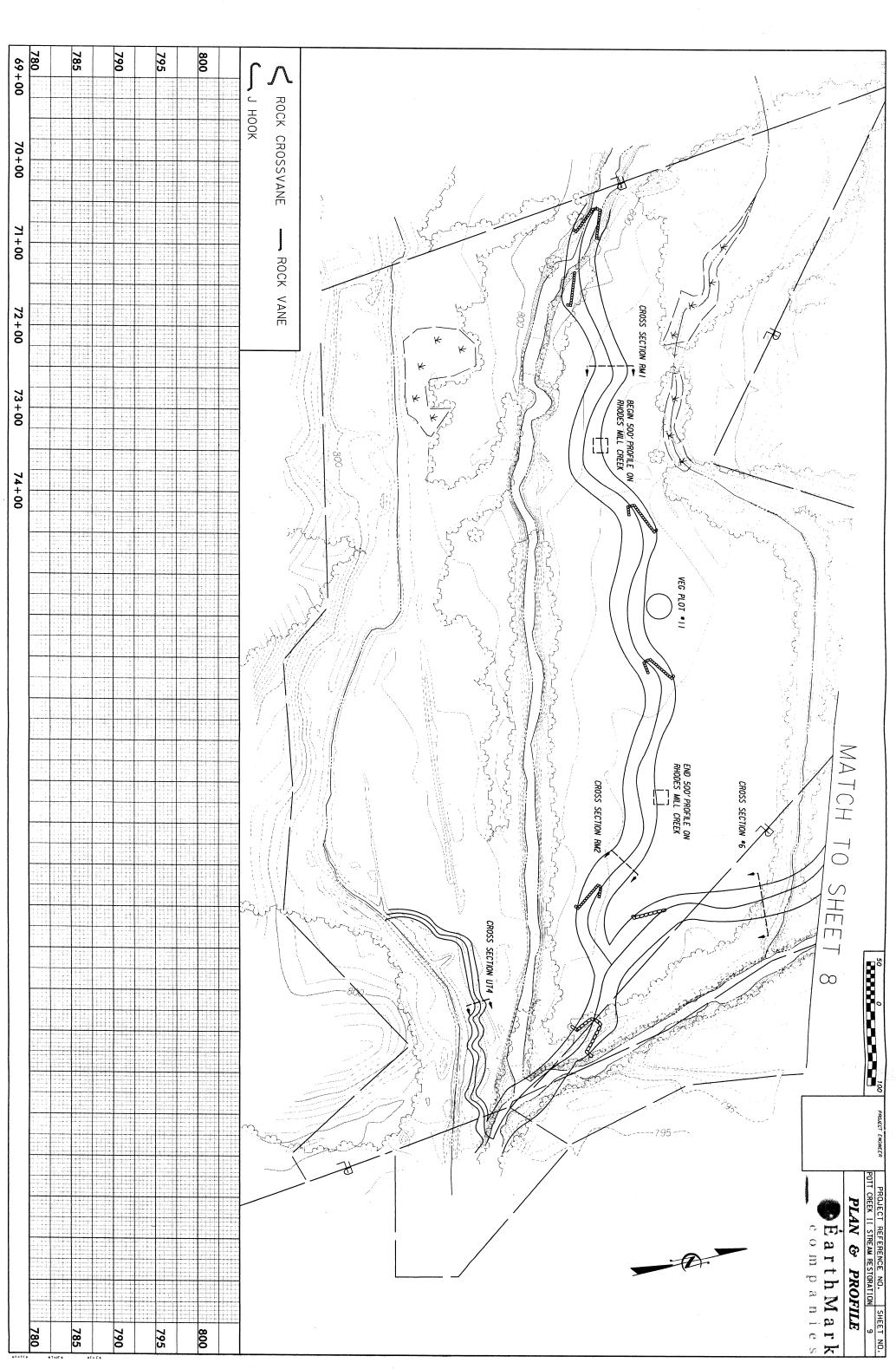



, <del>(</del>




, <del>(+)</del>




 $\oplus$ 





••••

 $(\underbrace{+})$ 



### **APPENDIX** A. Vegetation Raw Data

Vegetation Raw Data Vegetation Monitoring Plot Photos

### **Vegetation Plots**





11 (Along Rhodes Mill North)

10 (50X50)

1 (25X100)

11 plots

2500 square feet each

Total

27500

(1 acre = 43560 sq. feet)

Plot 1 Plot 2 Plot 3 Plot 4 Plot 5 Plot 6 Plot 7 Plot 8 Plot 9 Plot 10 Plot 11 Total

Total Dead Total Live Planted Volunteers

Volunteers Number "Ctressed"

Number "Stressed"

| 25 | 11 | 23 |   | 20 | 29 | 21 | 58 | 34 | 34 | 16 | 298 |
|----|----|----|---|----|----|----|----|----|----|----|-----|
| 7  | 9  | 4  | 5 | 3  | 2  | 10 | 4  | 1  | 4  | 9  | 58  |
| 3  | 2  | 0  | 2 | 1  | 2  | 5  | 3  | 2  | 1  | 1  | 22  |

Percent Survival
Percent "Stressed"

| 86% | 31% | 64% | 51% | 74% | 81% | 50% | 52% | 41% | 57% | 46% | 54% |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 12% | 18% | 0%  | 7%  | 5%  | 7%  | 24% | 5%  | 6%  | 3%  | 6%  | 7%  |

Stems per acre Number of Species

Number of Planted Species

| 435 | 191 | 400 | 470 | 348 | 505 | 365 | 1010 | 592 | 592 | 278 |
|-----|-----|-----|-----|-----|-----|-----|------|-----|-----|-----|
| 8   | 8   | 11  | 9   | 9   | 8   | 8   | 9    | 8   | 9   | 9   |
| 8   | 8   | 9   | 7   | 8   | 7   | 7   | 9    | 7   | 9   | 8   |

### **Combined Totals**

Percent Survival 54
Percent "Stressed" 7
Stems Per Acre 472
Number of Species 16
Total Planted Species 13

### **Vegetation Plot 1**

Comments: a lot of rubus in plot, some multi-flora rose, small patches

Herbaceous Cover 95% some minor bare spots

Fescue sp. NY Ironweed

Smartweed Polygonum pennsylvanicum
Tearthumb Polygonum hydropiperoides
Water pepper Polygonum arifolium

Cardinal Flower Plains Coreopsis

Goldenrod Daisy Fleabane Horse Nettle Poke Weed

New England Aster Annual Gaillardia Moss Verbana Gay Feather

Quercus phellos

Live Count 32 (7 Volunteers)

Crown
General Height Diameter
Species Type Health (inches) (inches)
Betula nigra

Betula nigra Volunteer Betula nigra Volunteer Betula nigra Volunteer Betula nigra Live Stake Good Betula nigra Live Stake Good Cornus amomum Tubling Stressed Diospyros vigininia Bareroot Good Diospyros vigininia Good Bareroot Fraxinus pennsylvanica Good Bareroot Fraxinus pennsylvanica Bareroot Good Fraxinus pennsylvanica Bareroot Good Fraxinus pennsylvanica Good Bareroot Fraxinus pennsylvanica Bareroot Good Fraxinus pennsylvanica Bareroot Good Fraxinus pennsylvanica Good Bareroot Fraxinus pennsylvanica Bareroot Good Fraxinus pennsylvanica Bareroot Good Fraxinus pennsylvanica Bareroot Stressed Fraxinus pennsylvanica Bareroot Stressed Platanus occidentalis Bareroot Good Platanus occidentalis Bareroot Good Quercus bicolor Good Tubling Quercus phellos **Tubling** Good Quercus phellos Bareroot Good

Bareroot

Good

Quercus phellosBarerootGoodQuercus phellosBarerootGoodSalix nigraVolunteer

Salix nigra Volunteer Salix nigra Volunteer Salix nigra Volunteer

Salix nigra Live Stake Good Salix nigra Live Stake Good

### **Vegetation Plot 2**

Comments: Some Rhubus, some multi-flora rose

Herbaceous Cover 100%

Fescue sp. NY Ironweed

Smartweed Polygonum pennsylvanicum
Tearthumb Polygonum hydropiperoides

Water pepper Polygonum arifolium

Plains Coreopsis Goldenrod Daisy Fleabane Horse Nettle Poke Weed Sourweed

Soft Rush Juncus effusus

New England Aster Annual Gaillardia Moss Verbana Gay Feather

Live Count 20 (9 Volunteers)

|                        |            |          |          | Crown    |
|------------------------|------------|----------|----------|----------|
|                        |            | General  | Height   | Diameter |
| Species                | Type       | Health   | (inches) | (inches) |
| Betula nigra           | Bareroot   | Stressed |          |          |
| Betula nigra           | Volunteer  |          |          |          |
| Betula nigra           | Volunteer  |          |          |          |
| Betula nigra           | Volunteer  |          |          |          |
| Betula nigra           | Volunteer  |          |          |          |
| Cornus amomum          | Live Stake | Good     |          |          |
| Cornus amomum          | Live Stake | Good     |          |          |
| Diospryos virginiana   | Bareroot   | Good     |          |          |
| Plantanus occidentalis | Volunteer  |          |          |          |
| Plantanus occidentalis | Volunteer  |          |          |          |
| Plantanus occidentalis | Volunteer  |          |          |          |
| Plantanus occidentalis | Volunteer  |          |          |          |
| Plantanus occidentalis | Volunteer  |          |          |          |
| Quercus lyrata         | Bareroot   | Good     |          |          |
| Quercus lyrata         | Bareroot   | Good     |          |          |
| Quercus lyrata         | Bareroot   | Stressed |          |          |
| Quercus palustris      | Bareroot   | Good     |          |          |
| Quercus phellos        | Bareroot   | Good     |          |          |
| Salix nigra            | Livestake  | Good     |          |          |
| Salix nigra            | Livestake  | Good     |          |          |
| Salix nigra            | Livestake  | Good     |          |          |

### **Vegetation Plot 3**

Comments: Plot grown up with dog fennel and golden rod. Invasives found in this plot:

rubis, multiflora rose, and chinese privet

Herbaceous Cover 100%

Fescue sp. NY Ironweed

Smartweed Polygonum pennsylvanicum
Tearthumb Polygonum hydropiperoides
Water pepper Polygonum arifolium

Plains Coreopsis Goldenrod

Daisy Fleabane Horse Nettle Poke Weed Sourweed

Soft Rush Juncus effusus

New England Aster Annual Gaillardia Moss Verbana Gay Feather

Rubus

Morning Glory sp.

Salix nigra

Live Count 27 (4+ Volunteers)

Crown
General Height Diameter
Species Type Health (inches)

Live Stake Good

Alnus serrulata Volunteer
Alnus serrulata Volunteer

Good Betula nigra Bareroot Betula nigra Volunteer-numerous Cornus amomum Bareroot Good Live Stake Good Cornus amomum Live Stake Good Cornus amomum Fraxinus pennsylvanica Bareroot Good Fraxinus pennsylvanica Bareroot Good Fraxinus pennsylvanica Bareroot Good Fraxinus pennsylvanica Bareroot Good Liriodendron tulipifera Volunteer Good Plantanus occidentalis Bareroot Good Plantanus occidentalis Volunteer-numerous Quercus bicolor Tubeling Good Good Quercus palustris Bareroot Quercus lyrata Bareroot Good Salix nigra Live Stake Good

Salix nigra

Salix nigra

Salix nigra

Salix nigra

Live Stake Good

Sambucca canadensis

Live Stake Good

### **Vegetation Plot 4**

Comments: Some invasives in plot: rubus, honey suckle (a lot), chinese privet

trees are tall and healthly

Herbaceous Cover 100%

Fescue sp.
NY Ironweed

Smartweed Polygonum pennsylvanicum Tearthumb Polygonum hydropiperoides

Plains Coreopsis Goldenrod Daisy Fleabane Horse Nettle Poke Weed Multifloria Rose

Soft Rush Juncus effusus

New England Aster Annual Gaillardia Moss Verbana Gay Feather

Live Count 32 (5 Volunteers)

|           |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Crown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | General                                                                                                                                                                                                                                                                                                                                                          | Height                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Type      | Health                                                                                                                                                                                                                                                                                                                                                           | (inches)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (inches)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Bareroot  | Good                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| volunteer |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| volunteer |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Bareroot  | Good                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| volunteer |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| volunteer |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| volunteer |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Bareroot  | Stressed                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Bareroot  | Stressed                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Bareroot  | Good                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           | Bareroot volunteer volunteer Bareroot | Type Bareroot volunteer volunteer Bareroot Stressed Bareroot Barer | Type Good Bareroot Good |

| Quercus palustris | Bareroot  | Good |
|-------------------|-----------|------|
| Quercus phellos   | tubling   | Good |
| Quercus phellos   | tubling   | Good |
| Quercus phellos   | tubling   | Good |
| Quercus phellos   | bareroot  | Good |
| Salix nigra       | Livestake | Good |
| Salix nigra       | Livestake | Good |
|                   |           |      |

### **Vegetation Plot 5** A lot of Rubus, posion ivy and honey suckle

Comments:

Herbaceous Cover 100%

Fescue sp.
NY Ironweed

Smartweed Polygonum pennsylvanicum
Tearthumb Polygonum hydropiperoides
Water pepper Polygonum arifolium

Plains Coreopsis Goldenrod Daisy Fleabane Horse Nettle

Soft Rush Juncus effusus

Trumpet Creeper Sourweed New England Aste

New England Aster Annual Gaillardia Bifloria Rose

Greenbrier Smilex

Gay Feather

Live Count 23 (3 Volunteer)

|                         |            |          |          | Crown    |
|-------------------------|------------|----------|----------|----------|
|                         |            | General  | Height   | Diameter |
| Species                 | Type       | Health   | (inches) | (inches) |
| Cornus amomum           | Tubelings  | Good     |          |          |
| Diospryos virginiana    | Bareroot   | Good     |          |          |
| Fraxinus pennsylvanica  | Bareroot   | Good     |          |          |
| Fraxinus pennsylvanica  | Bareroot   | Good     |          |          |
| Fraxinus pennsylvanica  | Bareroot   | Good     |          |          |
| Fraxinus pennsylvanica  | Bareroot   | Good     |          |          |
| Fraxinus pennsylvanica  | Bareroot   | Good     |          |          |
| Fraxinus pennsylvanica  | Bareroot   | Stressed |          |          |
| Liriodendron tulipifera | Volunteer  |          |          |          |
| Liriodendron tulipifera | Volunteer  |          |          |          |
| Plantanus occidentalis  | Live Stake | Good     |          |          |
| Plantanus occidentalis  | Live Stake | Good     |          |          |
| Plantanus occidentalis  | Volunteer  |          |          |          |
| Quercus bicolor         | Tubling    | Good     |          |          |
| Quercus bicolor         | Tubling    | Good     |          |          |
| Quercus lyrata          | Bareroot   | Good     |          |          |
| Quercus lyrata          | Bareroot   | Good     |          |          |
| Quercus lyrata          | Bareroot   | Good     |          |          |
| Quercus lyrata          | Bareroot   | Good     |          |          |
| Quercus lyrata          | Bareroot   | Good     |          |          |
| Quercus palustris       | Bareroot   | Good     |          |          |
| Salix nigra             | Livestake  | Good     |          |          |
| Salix nigra             | Livestake  | Good     |          |          |
| Salix nigra             | Livestake  | Good     |          |          |
|                         |            |          |          |          |

Vegetation Plot 6 Some rubus near creek along plot edge

Comments:

Herbaceous Cover 100%

Fescue sp. NY Ironweed Smartweed

Smartweed Polygonum pennsylvanicum
Tearthumb Polygonum hydropiperoides
Plains Coreopsis
Goldenrod
Daisy Fleabane

Horse Nettle Poke Weed New England Aster Annual Gaillardia Moss Verbana Gay Feather

| Live Count              | 31        | (2 Volunteers) |          | Crown    |
|-------------------------|-----------|----------------|----------|----------|
| Charina                 | Time      | General        | Height   | Diameter |
| Species                 | Type      | Health         | (inches) | (inches) |
| Betula nigra            | Volunteer | 0              |          |          |
| Cornus amomum           | Tubling   | Good           |          |          |
| Cornus amomum           | Bareroot  | Good           |          |          |
| Cornus amomum           | Bareroot  | Stressed       |          |          |
| Cornus amomum           | Livestake | Good           |          |          |
| Cornus amomum           | Livestake | Good           |          |          |
| Fraxinus pennsylvanica  | Bareroot  | Good           |          |          |
| Fraxinus pennsylvanica  | Bareroot  | Good           |          |          |
| Fraxinus pennsylvanica  | Bareroot  | Good           |          |          |
| Fraxinus pennsylvanica  | Bareroot  | Good           |          |          |
| Fraxinus pennsylvanica  | Bareroot  | Good           |          |          |
| Fraxinus pennsylvanica  | Bareroot  | Stressed       |          |          |
| Fraxinus pennsylvanica  | Bareroot  | Good           |          |          |
| Liriodendron tulipifera | Volunteer |                |          |          |
| Platanus occidentalis   | Bareroot  | Good           |          |          |
| Platanus occidentalis   | Volunteer |                |          |          |
| Quercus bicolor         | Tubling   | Good           |          |          |
| Quercus bicolor         | Bareroot  | Good           |          |          |
| Quercus bicolor         | Bareroot  | Good           |          |          |
| Quercus bicolor         | Bareroot  | Good           |          |          |
| Quercus lyrata          | Bareroot  | Good           |          |          |
| Quercus lyrata          | Bareroot  | Good           |          |          |
| Quercus lyrata          | Bareroot  | Good           |          |          |
| Quercus lyrata          | Bareroot  | Good           |          |          |
| Quercus lyrata          | Bareroot  | Good           |          |          |
| Quercus lyrata          | Bareroot  | Good           |          |          |
| Quercus palustris       | Bareroot  | Good           |          |          |
| Quercus palustris       | Bareroot  | Good           |          |          |

| Quercus palustris | Bareroot  | Good |
|-------------------|-----------|------|
| Salix nigra       | Livestake | Good |
| Salix nigra       | Livestake | Good |
| Salix nigra       | Livestake | Good |
|                   |           |      |

Comments: some honeysuckle

Herbaceous Cover 97%

Fescue sp. NY Ironweed

Smartweed Polygonum pennsylvanicum
Tearthumb Polygonum hydropiperoides
Water pepper Polygonum arifolium

Water pepper Plains Coreopsis Goldenrod Daisy Fleabane

Horse Nettle Poke Weed Sourweed

Soft Rush Juncus effusus

New England Aster Annual Gaillardia Moss Verbana Gay Feather Trumpet Creeper

Live Count 37 (10 Volunteers)

|                        |           |          |          | Crown    |
|------------------------|-----------|----------|----------|----------|
|                        |           | General  | Height   | Diameter |
| Species                | Type      | Health   | (inches) | (inches) |
| Betula nigra           | Bareroot  | stressed |          |          |
| Cornus amomum          | Bareroot  | Good     |          |          |
| Cornus amomum          | Bareroot  | Good     |          |          |
| Diospyros virginiana   | Bareroot  | Good     |          |          |
| Fraxinus pennsylvanica | Bareroot  | Good     |          |          |
| Fraxinus pennsylvanica | Bareroot  | Good     |          |          |
| Fraxinus pennsylvanica | Bareroot  | Good     |          |          |
| Platanus occidentalis  | Bareroot  | Good     |          |          |
| Platanus occidentalis  | Bareroot  | Good     |          |          |
| Platanus occidentalis  | Bareroot  | Good     |          |          |
| Platanus occidentalis  | Bareroot  | Stressed |          |          |
| Platanus occidentalis  | Bareroot  | Good     |          |          |
| Platanus occidentalis  | Bareroot  | Good     |          |          |
| Platanus occidentalis  | Bareroot  | Good     |          |          |
| Platanus occidentalis  | Bareroot  | Stressed |          |          |
| Platanus occidentalis  | Bareroot  | Good     |          |          |
| Platanus occidentalis  | Bareroot  | Stressed |          |          |
| Platanus occidentalis  | volunteer |          |          |          |
| Platanus occidentalis  | volunteer |          |          |          |
| Platanus occidentalis  | volunteer |          |          |          |
| Platanus occidentalis  | volunteer |          |          |          |
| Platanus occidentalis  | volunteer |          |          |          |
| Platanus occidentalis  | volunteer |          |          |          |
| Platanus occidentalis  | volunteer |          |          |          |

| Platanus occidentalis | volunteer |          |
|-----------------------|-----------|----------|
| Platanus occidentalis | volunteer |          |
| Quercus bicolor       | Tubling   | Good     |
| Quercus bicolor       | Bareroot  | Good     |
| Quercus bicolor       | Bareroot  | Good     |
| Quercus lyrata        | Tubling   | Good     |
| Quercus lyrata        | Tubling   | Good     |
| Quercus lyrata        | Tubling   | Good     |
| Quercus palustris     | Bareroot  | Good     |
| Quercus palustris     | Bareroot  | Good     |
| Quercus palustris     | Bareroot  | Good     |
| Quercus palustris     | tubling   | Good     |
| Quercus palustris     | Bareroot  | stressed |
| Sambucca canadensis   | volunteer |          |

Comments: some multiflora

Herbaceous Cover 100%

Fescue sp.
NY Ironweed

Smartweed Polygonum pennsylvanicum

Cardinal Flower Plains Coreopsis Goldenrod Daisy Fleabane Horse Nettle Poke Weed Sourweed

Soft Rush Juncus effusus

Annual Gaillardia Moss Verbana Gay Feather

Live Count 62 (4 Volunteer)

| Live Count             | 02         | (4 Volulli | (4 Volunteer)   |                   |
|------------------------|------------|------------|-----------------|-------------------|
|                        |            | General    |                 | Crown<br>Diameter |
| Species                | Туре       | Health     | Height (inches) | (inches)          |
| Cornus amomum          | Live Stake | Good       |                 |                   |
| Cornus amomum          | Live Stake | Good       |                 |                   |
| Cornus amomum          | Live Stake | Good       |                 |                   |
| Fraxinus pennsylvanica | Bareroot   | Good       |                 |                   |
| Fraxinus pennsylvanica | Bareroot   | Good       |                 |                   |
| Fraxinus pennsylvanica | Bareroot   | Good       |                 |                   |
| Fraxinus pennsylvanica | Bareroot   | Good       |                 |                   |
| Fraxinus pennsylvanica | Bareroot   | Good       |                 |                   |
| Fraxinus pennsylvanica | Bareroot   | Good       |                 |                   |
| Fraxinus pennsylvanica | Bareroot   | Good       |                 |                   |
| Fraxinus pennsylvanica | Bareroot   | Good       |                 |                   |
| Fraxinus pennsylvanica | Bareroot   | Good       |                 |                   |
| Fraxinus pennsylvanica | Bareroot   | Good       |                 |                   |
| Fraxinus pennsylvanica | Bareroot   | Good       |                 |                   |
| Fraxinus pennsylvanica | Bareroot   | Good       |                 |                   |
| Fraxinus pennsylvanica | Bareroot   | Good       |                 |                   |
| Fraxinus pennsylvanica | Bareroot   | Good       |                 |                   |
| Fraxinus pennsylvanica | Bareroot   | Good       |                 |                   |
| Fraxinus pennsylvanica | Bareroot   | Good       |                 |                   |
| Fraxinus pennsylvanica | Bareroot   | Dying      |                 |                   |
| Fraxinus pennsylvanica | Bareroot   | Good       |                 |                   |
| Fraxinus pennsylvanica | Bareroot   | Good       |                 |                   |
| Fraxinus pennsylvanica | Bareroot   | Good       |                 |                   |
| Fraxinus pennsylvanica | Bareroot   | Stressed   |                 |                   |
| Platanus occidentalis  | Live Stake | Good       |                 |                   |
| Platanus occidentalis  | Live Stake | Good       |                 |                   |
| Platanus occidentalis  | Live Stake | Good       |                 |                   |
|                        |            |            |                 |                   |

| Platanus occidentalis | Live Stake | Good |
|-----------------------|------------|------|
| Platanus occidentalis | Live Stake | Good |
| Platanus occidentalis | Live Stake | Good |
| Platanus occidentalis | Live Stake | Good |
| Platanus occidentalis | Live Stake | Good |
| Platanus occidentalis | Live Stake | Good |
|                       |            |      |

Platanus occidentalis Volunteer
Platanus occidentalis Volunteer
Platanus occidentalis Volunteer
Platanus occidentalis Volunteer

Quercus bicolor Bareroot Good Quercus lyrata Bareroot Good Quercus lyrata Bareroot Good Quercus lyrata Good Bareroot Quercus lyrata Good Bareroot Quercus lyrata Good Bareroot Good Quercus lyrata Bareroot Quercus lyrata Bareroot Good Quercus lyrata Bareroot Good Quercus lyrata Stressed Bareroot Good Quercus lyrata **Bareroot** Quercus lyrata Bareroot Good Bareroot Stressed Quercus lyrata Quercus lyrata **Bareroot** Good Quercus lyrata Bareroot Gpod Quercus lyrata Gpod Bareroot Quercus lyrata **Bareroot** Gpod Quercus nigra Bareroot Good Good Quercus palustris Bareroot Quercus palustris **Bareroot** Good Quercus phellos Bareroot Good Quercus phellos **Bareroot** Good Quercus phellos Bareroot Good

Salix nigra Live Stake Salix nigra Live Stake Salix nigra Live Stake

Comments: Some rubus was found in this plot. Some remnant sand was still in

floodplain but overall herb cover is better than last year

**Dead Count** 

Herbaceous Cover 92%

Fescue sp.
NY Ironweed

Smartweed Polygonum pennsylvanicum

Plains Coreopsis Goldenrod Daisy Fleabane Annual Gaillardia Moss Verbana Gay Feather

Live Count 35 (1 Volunteers)

|                        |            | •        | ,        | Crown          |
|------------------------|------------|----------|----------|----------------|
|                        |            | General  | Height   | Crown Diameter |
| Species                | Type       | Health   | (inches) | (inches)       |
| Cornus amomum          | Live Stake | Good     |          |                |
| Cornus amomum          | Live Stake | Good     |          |                |
| Cornus amomum          | Live Stake | Good     |          |                |
| Cornus amomum          | Live Stake | Good     |          |                |
| Cornus amomum          | Live Stake | Good     |          |                |
| Cornus amomum          | Live Stake | Good     |          |                |
| Cornus amomum          | Live Stake | Good     |          |                |
| Fraxinus pennsylvanica | Bareroot   | Good     |          |                |
| Fraxinus pennsylvanica | Bareroot   | Good     |          |                |
| Fraxinus pennsylvanica | Bareroot   | Good     |          |                |
| Fraxinus pennsylvanica | Bareroot   | Good     |          |                |
| Fraxinus pennsylvanica | Bareroot   | Good     |          |                |
| Fraxinus pennsylvanica | Bareroot   | Good     |          |                |
| Fraxinus pennsylvanica | Bareroot   | Good     |          |                |
| Fraxinus pennsylvanica | Bareroot   | Good     |          |                |
| Fraxinus pennsylvanica | Bareroot   | Stressed |          |                |
| Fraxinus pennsylvanica | Bareroot   | Good     |          |                |
| Fraxinus pennsylvanica | Bareroot   | Good     |          |                |
| Fraxinus pennsylvanica | Bareroot   | Good     |          |                |
| Fraxinus pennsylvanica | Bareroot   | Good     |          |                |
| Fraxinus pennsylvanica | Bareroot   | Good     |          |                |
| Fraxinus pennsylvanica | Bareroot   | Good     |          |                |
| Platanus occidentalis  | Volunteer  |          |          |                |
| Quercus lyrata         | Bareroot   | Good     |          |                |
| Quercus lyrata         | Bareroot   | Good     |          |                |
| Quercus lyrata         | Bareroot   | Good     |          |                |
| Quercus lyrata         | Bareroot   | Good     |          |                |
| Quercus nigra          | Bareroot   | Good     |          |                |
| Quercus palustris      | Bareroot   | Stressed |          |                |
| Quercus phellos        | Bareroot   | Good     |          |                |
| Quercus phellos        | Bareroot   | Good     |          |                |

| Salix nigra | Livestake | Good |
|-------------|-----------|------|
| Salix nigra | Livestake | Good |
| · ·         |           |      |

Comments: trees in this plot were very large

and healthy

Herbaceous Cover 90%

Fescue sp.
NY Ironweed

Smartweed Polygonum pennsylvanicum

Plains Coreopsis Goldenrod Daisy Fleabane Horse Nettle Poke Weed Sourweed

Soft Rush Juncus effusus

Annual Gaillardia Moss Verbana Gay Feather

Live Count 38 (4 Volunteers)

|                        |            |         |          | Crown    |
|------------------------|------------|---------|----------|----------|
|                        |            | General | Height   | Diameter |
| Species                | Type       | Health  | (inches) | (inches) |
| Cornus amomum          | Bareroot   | Good    |          |          |
| Cornus amomum          | Live Stake | Good    |          |          |
| Betula nigra           | Bareroot   | Good    |          |          |
| Fraxinus pennsylvanica | Bareroot   | Good    |          |          |
| Fraxinus pennsylvanica | Bareroot   | Good    |          |          |
| Fraxinus pennsylvanica | Bareroot   | Good    |          |          |
| Fraxinus pennsylvanica | Bareroot   | Good    |          |          |
| Fraxinus pennsylvanica | Bareroot   | Good    |          |          |
| Fraxinus pennsylvanica | Bareroot   | Good    |          |          |
| Fraxinus pennsylvanica | Bareroot   | Good    |          |          |
| Fraxinus pennsylvanica | Bareroot   | Good    |          |          |
| Fraxinus pennsylvanica | Bareroot   | Good    |          |          |
| Fraxinus pennsylvanica | Bareroot   | Good    |          |          |
| Fraxinus pennsylvanica | Bareroot   | Good    |          |          |
| Platanus occidentalis  | Live Stake |         |          |          |
| Quercus lyrata         | Bareroot   |         |          |          |
| Quercus lyrata         | Bareroot   |         |          |          |
| Quercus lyrata         | Bareroot   |         |          |          |
| Quercus lyrata         | Bareroot   | Good    |          |          |
| Quercus lyrata         | Bareroot   | Good    |          |          |
| Quercus lyrata         | Bareroot   | Good    |          |          |
| Quercus lyrata         | Bareroot   | Good    |          |          |
| Quercus lyrata         | Bareroot   | Good    |          |          |
| Quercus lyrata         | Bareroot   | Good    |          |          |
| Quercus lyrata         | Bareroot   | Good    |          |          |
| Quercus lyrata         | Bareroot   | Good    |          |          |
| Quercus nigra          | Bareroot   | Good    |          |          |
| Quercus palustris      | Bareroot   | Good    |          |          |
|                        |            |         |          |          |

Quercus palustrisBarerootGoodQuercus palustrisBarerootGoodQuercus palustrisBarerootGoodQuercus phellosBarerootStressedQuercus phellosBarerootGoodSalix nigraLive StakeGoodSalix nigraLive StakeGood

Salix nigra Volunteer Salix nigra Volunteer Salix nigra Volunteer Salix nigra Volunteer

Comments: Lots of small sycamore volunteers on bank- grown up w/ Herbaceous plants

trees are very healthy \*also small alder volunteers

Herbaceous Cover 100%

Fescue sp. NY Ironweed

Smartweed Polygonum pennsylvanicum

Soft Rush Juncus effusus Begger Tick's Bidens frondosa Goldenrod

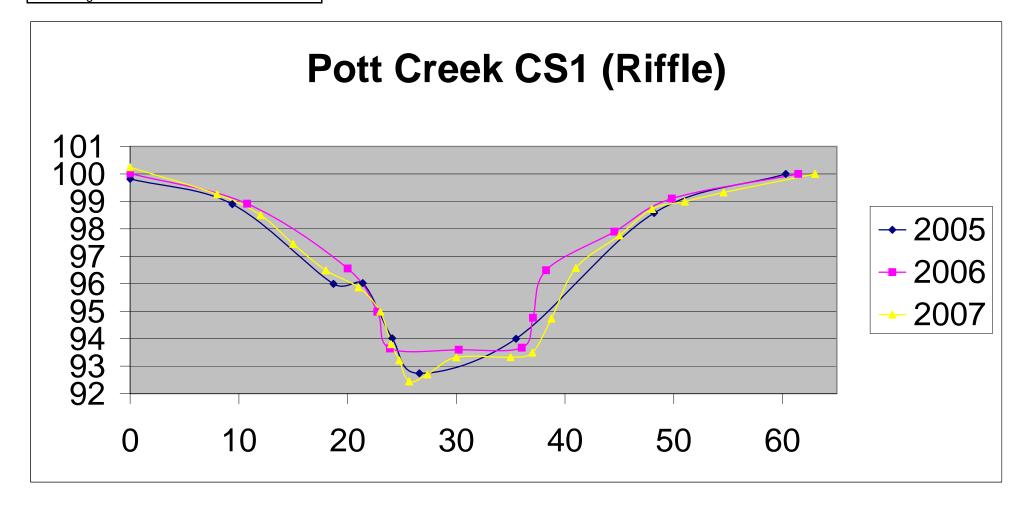
Goldenrod
Daisy Fleabane
Horse Nettle
Gay Feather

| Live Count | 25 | (9 Volunteers) |
|------------|----|----------------|
|            |    |                |

|                         |           |          |          | Crown    |
|-------------------------|-----------|----------|----------|----------|
|                         |           | General  | Height   | Diameter |
| Species                 | Type      | Health   | (inches) | (inches) |
| Alnus serrulata         | Volunteer |          |          |          |
| Alnus serrulata         | Volunteer |          |          |          |
| Betula nigra            | Livestake | Good     |          |          |
| Betula nigra            | Volunteer |          |          |          |
| Betula nigra            | Volunteer |          |          |          |
| Cornus amomum           | Bareroot  | Good     |          |          |
| Cornus amomum           | Bareroot  | Good     |          |          |
| Cornus amomum           | Bareroot  | Good     |          |          |
| Fraxinus pennsylvanica  | Bareroot  | Good     |          |          |
| Fraxinus pennsylvanica  | Bareroot  | Good     |          |          |
| Fraxinus pennsylvanica  | Bareroot  | Good     |          |          |
| Liquidambar styraciflua | Volunteer |          |          |          |
| Liquidambar styraciflua | Volunteer |          |          |          |
| Platanus occidentalis   | Volunteer |          |          |          |
| Platanus occidentalis   | Volunteer |          |          |          |
| Platanus occidentalis   | Volunteer |          |          |          |
| Platanus occidentalis   | Livestake | Good     |          |          |
| Quercus lyrata          | Bareroot  | Good     |          |          |
| Quercus lyrata          | Bareroot  | Good     |          |          |
| Quercus lyrata          | Bareroot  | Good     |          |          |
| Quercus lyrata          | Bareroot  | Good     |          |          |
| Quercus nigra           | Bareroot  | Good     |          |          |
| Quercus palustris       | Bareroot  | Good     |          |          |
| Quercus palustris       | Bareroot  | Good     |          |          |
| Quercus palustris       | Bareroot  | Stressed |          |          |
| Salix nigra             | Livestake | Good     |          |          |
|                         |           |          |          |          |

# **APPENDIX** B. Cross Sections

**Data Plots and Tables Photos** 


| 2005 Data<br>Station<br>70.3<br>58.2<br>45.5<br>36.6<br>34.1<br>31.4<br>28.7<br>19.4 | Backshot<br>4.739 | HI<br>19.739   | Foreshot 6.162 10.740 12.002 10.725 8.713 8.741 5.843 4.919 | 95.998                           | RBF<br>REW<br>Thw<br>LEW | Width 60.3 48.2 35.5 26.6 24.1 21.4 18.7 9.4 0 |
|--------------------------------------------------------------------------------------|-------------------|----------------|-------------------------------------------------------------|----------------------------------|--------------------------|------------------------------------------------|
| 2007 Data                                                                            |                   |                |                                                             |                                  |                          |                                                |
| 0                                                                                    |                   |                | 3.28                                                        | 100.24                           | GS rebar                 |                                                |
| 8                                                                                    |                   |                | 4.26                                                        | 99.26                            |                          |                                                |
| 12                                                                                   |                   |                | 5.02                                                        | 98.5                             |                          |                                                |
| 15                                                                                   |                   |                | 6.07                                                        | 97.45                            |                          |                                                |
| 18                                                                                   |                   |                | 7.03                                                        | 96.49                            |                          |                                                |
| 21                                                                                   |                   |                | 7.65                                                        | 95.87                            |                          |                                                |
| 23                                                                                   |                   |                | 8.53                                                        | 94.99                            |                          |                                                |
| 24                                                                                   |                   |                | 9.72                                                        | 93.8                             | LEW                      |                                                |
| 24.8                                                                                 |                   |                | 10.31                                                       | 93.21                            | SOW                      |                                                |
| 25.7                                                                                 |                   |                | 11.08                                                       | 92.44                            | <del>-</del>             |                                                |
| 27.3                                                                                 |                   |                | 10.82                                                       | 92.7                             | Thw                      |                                                |
| 30.0                                                                                 |                   |                | 10.2                                                        |                                  |                          |                                                |
| 35.0                                                                                 |                   |                | 10.19                                                       | 93.33                            | DEW                      |                                                |
| 37.0<br>38.8                                                                         |                   |                | 10.03<br>8.79                                               | 93.49<br>94.73                   | REW                      |                                                |
| 41.0                                                                                 |                   |                | 6.95                                                        | 94.73<br>96.57                   |                          |                                                |
| 45.0                                                                                 |                   |                | 5.76                                                        | 97.76                            |                          |                                                |
| 48.0                                                                                 |                   |                | 4.8                                                         | 98.72                            |                          |                                                |
| 51.0                                                                                 |                   |                | 4.53                                                        | 98.99                            |                          |                                                |
| 54.6                                                                                 |                   |                | 4.2                                                         |                                  |                          |                                                |
| 63.0                                                                                 |                   |                | 3.52                                                        | 100                              | GS rebar                 |                                                |
|                                                                                      |                   |                |                                                             |                                  |                          |                                                |
|                                                                                      |                   |                |                                                             |                                  |                          |                                                |
|                                                                                      |                   |                | 2005 e                                                      | 2006 e                           | 2007 e                   |                                                |
| 60                                                                                   | 0                 | 0              | 100                                                         | 100.01266                        |                          |                                                |
| 48                                                                                   | 11                | 8              | 98.577                                                      | 98.91681                         | 99.26                    |                                                |
| 36                                                                                   | 20                | 12             | 93.999                                                      | 96.55607                         |                          |                                                |
|                                                                                      |                   |                |                                                             |                                  |                          |                                                |
|                                                                                      |                   |                |                                                             |                                  |                          |                                                |
| 27<br>24<br>21                                                                       | 23<br>24<br>30    | 15<br>18<br>21 | 92.737<br>94.014<br>96.026                                  | 94.97554<br>93.64022<br>93.59748 | 97.45<br>96.49           |                                                |

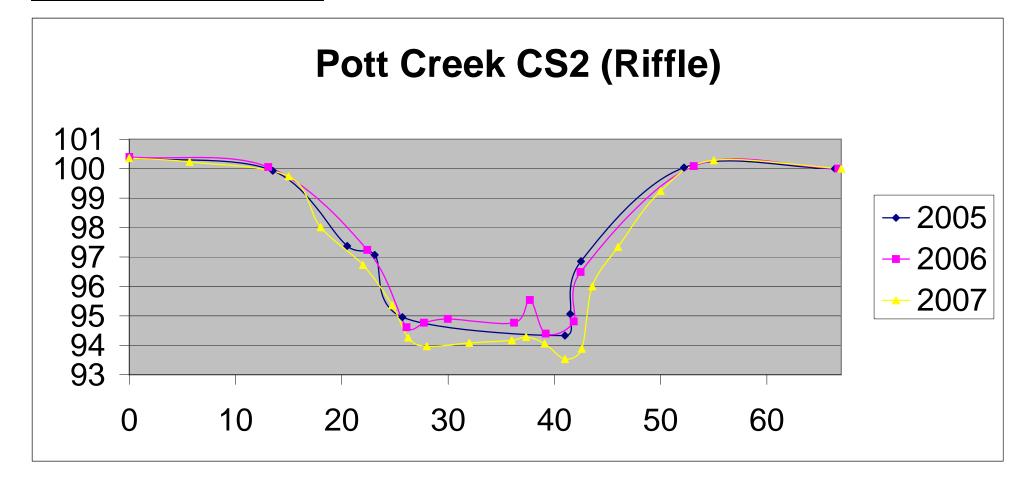
| 2006 Data | ì        |          |           |             |         |       |
|-----------|----------|----------|-----------|-------------|---------|-------|
| Point     | Χ        | Υ        | Elevation | Corrected E | Feature | Width |
| PC11      | 4995.182 | 5006.866 | 95.01494  | 100.01266   |         | 0     |
| PC12      | 4999.212 | 4996.872 | 93.91909  | 98.91681    | ltb     | 10.77 |
| PC13      | 5003.695 | 4988.648 | 91.55835  | 96.55607    | lbf?    | 20.02 |
| PC14      | 5004.79  | 4986.158 | 89.97782  | 94.97554    |         | 22.73 |
| PC15      | 5005.114 | 4985.033 | 88.6425   | 93.64022    | lew     | 23.9  |
| PC16      | 5006.37  | 4978.765 | 88.59976  | 93.59748    | THW     | 30.23 |
| PC17      | 5009.166 | 4973.599 | 88.67336  | 93.67108    | rew     | 36.03 |
| PC18      | 5009.352 | 4972.585 | 89.765    | 94.76272    |         | 37.05 |
| PC19      | 5009.841 | 4971.471 | 91.49072  | 96.48844    | rbf?    | 38.26 |
| PC110     | 5011.447 | 4965.371 | 92.89686  | 97.89458    | rtb?    | 44.55 |
| PC111     | 5012.801 | 4960.246 | 94.10344  | 99.10116    | rtb     | 49.83 |
| PC112     | 5016.714 | 4949.301 | 95.00228  | 100         |         | 61.45 |

| 19 | 36 | 23 | 95.998 | 93.67108 | 94.99 |
|----|----|----|--------|----------|-------|
| 9  | 37 | 24 | 98.896 | 94.76272 | 93.8  |
| 0  | 38 | 25 | 99.82  | 96.48844 | 93.21 |
|    | 45 | 26 |        | 97.89458 | 92.44 |
|    | 50 | 27 |        | 99.10116 | 92.7  |
|    | 61 | 30 |        | 100      | 93.32 |
|    |    | 35 |        |          | 93.33 |
|    |    | 37 |        |          | 93.49 |
|    |    | 39 |        |          | 94.73 |
|    |    | 41 |        |          | 96.57 |
|    |    | 45 |        |          | 97.76 |
|    |    | 48 |        |          | 98.72 |
|    |    | 51 |        |          | 98.99 |
|    |    | 55 |        |          | 99.32 |
|    |    | 63 |        |          | 100   |
|    |    |    |        |          |       |

|             | 0 D.      | l-       |  |  |  |  |  |  |
|-------------|-----------|----------|--|--|--|--|--|--|
| Survey Data |           |          |  |  |  |  |  |  |
| Station     | Elevation | Feature  |  |  |  |  |  |  |
| 0           | 100.24    | GS rebar |  |  |  |  |  |  |
| 8           | 99.26     |          |  |  |  |  |  |  |
| 12          | 98.5      |          |  |  |  |  |  |  |
| 15          | 97.45     |          |  |  |  |  |  |  |
| 18          | 96.49     |          |  |  |  |  |  |  |
| 21          | 95.87     |          |  |  |  |  |  |  |
| 23          | 94.99     |          |  |  |  |  |  |  |
| 24          | 93.8      | LEW      |  |  |  |  |  |  |
| 24.8        | 93.21     | SOW      |  |  |  |  |  |  |
| 25.7        | 92.44     |          |  |  |  |  |  |  |
| 27.3        | 92.7      | Thw      |  |  |  |  |  |  |
| 30.0        | 93.32     |          |  |  |  |  |  |  |
| 35.0        | 93.33     |          |  |  |  |  |  |  |
| 37.0        | 93.49     | REW      |  |  |  |  |  |  |
| 38.8        | 94.73     |          |  |  |  |  |  |  |
| 41.0        | 96.57     |          |  |  |  |  |  |  |
| 45.0        | 97.76     |          |  |  |  |  |  |  |
| 48.0        | 98.72     |          |  |  |  |  |  |  |
| 51.0        | 98.99     |          |  |  |  |  |  |  |
| 54.6        | 99.32     |          |  |  |  |  |  |  |
| 63.0        | 100       | GS rebar |  |  |  |  |  |  |

|                                               | As-built |         |         |         |         |         |
|-----------------------------------------------|----------|---------|---------|---------|---------|---------|
| Summary Data Table                            | Mean     | M1 2005 | M2 2006 | M3 2007 | M4 2008 | M5 2009 |
| Bankfull Cross Sectional Area: Range 105 -136 | 120.5    | 128.30  | 118.2   | 121.2   |         |         |
| Bankfull Width: Range 33.3 - 41.2             | 37.25    | 41.50   | 40.9    | 37.2    |         |         |
| Bankfull Mean Depth: Range 3.1 - 3.3          | 3.2      | 3.10    | 2.9     | 3.3     |         |         |
| Bankfull Max Depth: Range 4.5 - 5.1           | 4.82     | 6.20    | 5.5     | 6.3     |         |         |
| Width/Depth Ratio: Range 10.7 - 12.5          | 11.6     | 13.40   | 14.10   | 11.40   |         |         |
| Entrenchment Ratio: Range 7.2 - 9.0           | 8.05     | 7.20    | 7.30    | 8.10    |         |         |
| Average Width of Flood Prone Area = 300       |          | •       |         |         |         | _       |




|           | 2005 Data |       |          |           |          |       |
|-----------|-----------|-------|----------|-----------|----------|-------|
| Station   | Backshot  | HI    | Foreshot | Elevation | Feature  | Width |
| 77.3      | 5.32      | 20.32 |          | 100.00    | GS       | 66.4  |
| 63.1      |           |       | 5.284    | 100.04    | RFB      | 52.2  |
| 53.4      |           |       | 8.468    | 96.85     |          | 42.5  |
| 52.4      |           |       | 10.257   | 95.06     | REW      | 41.5  |
| 51.9      |           |       | 10.988   | 94.33     | Thw      | 41    |
| 36.6      |           |       | 10.363   | 94.96     | LEW      | 25.7  |
| 34        |           |       | 8.252    | 97.07     |          | 23.1  |
| 31.4      |           |       | 7.946    | 97.37     |          | 20.5  |
| 24.4      |           |       | 5.391    | 99.93     |          | 13.5  |
| 10.9      |           |       | 4.95     | 100.37    | GS       | 0     |
| 2007 Data |           |       |          |           |          |       |
| 0.0       |           |       | 3.5      | 100.36    | GS rebar |       |
| 5.7       |           |       | 3.63     | 100.23    |          |       |
| 15.0      |           |       | 4.12     | 99.74     |          |       |
| 18.0      |           |       | 5.85     | 98.01     |          |       |
| 22.0      |           |       | 7.13     | 96.73     |          |       |
| 24.8      |           |       | 8.5      | 95.36     | Mid bank |       |
| 26.3      |           |       | 9.6      | 94.26     | LEW      |       |
| 28.0      |           |       | 9.89     | 93.97     |          |       |
| 32.0      |           |       | 9.78     | 94.08     |          |       |
| 36.0      |           |       | 9.69     | 94.17     |          |       |
| 37.3      |           |       | 9.58     |           | Sand bar |       |
| 39.1      |           |       | 9.8      |           | Sand bar |       |
| 41.0      |           |       | 10.33    |           | Thw      |       |
| 42.6      |           |       | 9.98     | 93.88     | REW      |       |
| 43.6      |           |       | 7.86     | 96        |          |       |
| 46.0      |           |       | 6.52     |           |          |       |
| 50.0      |           |       | 4.62     |           |          |       |
| 55.0      |           |       | 3.58     |           | 00       |       |
| 67.0      |           |       | 3.86     | 100       | GS rebar |       |
| 2005 w    |           |       | 2005 e   | 2006 e    | 2007e    |       |
| 66        | _         | 0     | 100.00   | 100.40    | 100.36   |       |
| 52        |           | 6     | 100.04   | 100.05    | 100.23   |       |
| 43        |           | 15    | 96.85    | 97.24     | 99.74    |       |
| 42        |           | 18    | 95.06    | 94.61     | 98.01    |       |
| 41        | 28        | 22    | 94.33    | 94.77     | 96.73    |       |
| 26        |           | 25    | 94.96    | 94.90     | 95.36    |       |
| 23        |           | 26    | 97.07    | 94.77     | 94.26    |       |
| 21        | 38        | 28    | 97.37    | 95.54     | 93.97    |       |

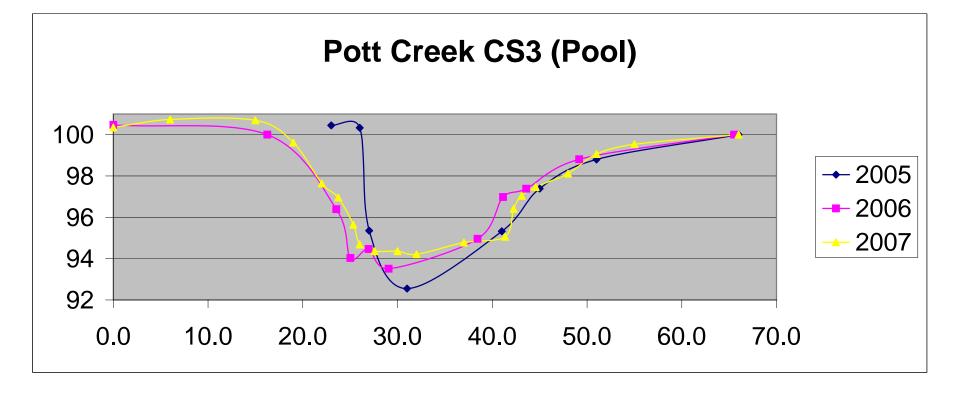
| 2006 Data |          |          |           |             |          |       |
|-----------|----------|----------|-----------|-------------|----------|-------|
| Point     | X        | Υ        | Elevation | Corrected E | Feature  | Width |
| PC21      | 5021.839 | 5005.995 | 97.21542  | 100.39873   |          | 0.00  |
| PC22      | 5011.482 | 4997.96  | 96.86841  | 100.05172   | lbf      | 13.09 |
| PC23      | 5004.723 | 4991.521 | 94.05649  | 97.2398     |          | 22.41 |
| PC24      | 5002.023 | 4989.025 | 91.42863  | 94.61194    | lew      | 26.09 |
| PC25      | 5000.768 | 4987.946 | 91.58424  | 94.76755    |          | 27.74 |
| PC26      | 4998.98  | 4986.612 | 91.71234  | 94.89565    |          | 29.97 |
| PC27      | 4994.388 | 4982.376 | 91.58226  | 94.76557    |          | 36.21 |
| PC28      | 4993.025 | 4981.68  | 92.35304  | 95.53635    | sand bar | 37.70 |
| PC29      | 4991.936 | 4980.656 | 91.21239  | 94.3957     | thw      | 39.19 |
| PC210     | 4989.802 | 4979.094 | 91.62571  | 94.80902    | rew      | 41.83 |
| PC211     | 4989.151 | 4978.868 | 93.30685  | 96.49016    |          | 42.47 |
| PC212     | 4981.004 | 4972.012 | 96.90567  | 100.08898   | rbf      | 53.12 |
| PC213     | 4970.744 | 4963.074 | 96.81669  | 100         |          | 66.73 |
|           |          |          |           |             |          |       |

| 14 | 39 | 32 | 99.93  | 94.40  | 94.08  |  |
|----|----|----|--------|--------|--------|--|
| 0  | 42 | 36 | 100.37 | 94.81  | 94.17  |  |
|    | 42 | 37 |        | 96.49  | 94.28  |  |
|    | 53 | 39 |        | 100.09 | 94.06  |  |
|    | 67 | 41 |        | 100.00 | 93.53  |  |
|    |    | 43 |        |        | 93.88  |  |
|    |    | 44 |        |        | 96     |  |
|    |    | 46 |        |        | 97.34  |  |
|    |    | 50 |        |        | 99.24  |  |
|    |    | 55 |        |        | 100.28 |  |
|    |    | 67 |        |        | 100    |  |

| Survey Data |           |          |  |  |  |  |  |  |  |
|-------------|-----------|----------|--|--|--|--|--|--|--|
| Station     | Elevation | Feature  |  |  |  |  |  |  |  |
| 0.0         | 100.36    | GS rebar |  |  |  |  |  |  |  |
| 5.7         | 100.23    |          |  |  |  |  |  |  |  |
| 15.0        | 99.74     |          |  |  |  |  |  |  |  |
| 18.0        | 98.01     |          |  |  |  |  |  |  |  |
| 22.0        | 96.73     |          |  |  |  |  |  |  |  |
| 24.8        | 95.36     | Mid bank |  |  |  |  |  |  |  |
| 26.3        | 94.26     | LEW      |  |  |  |  |  |  |  |
| 28.0        | 93.97     |          |  |  |  |  |  |  |  |
| 32.0        | 94.08     |          |  |  |  |  |  |  |  |
| 36.0        | 94.17     |          |  |  |  |  |  |  |  |
| 37.3        | 94.28     | Sand bar |  |  |  |  |  |  |  |
| 39.1        | 94.06     | Sand bar |  |  |  |  |  |  |  |
| 41.0        | 93.53     | Thw      |  |  |  |  |  |  |  |
| 42.6        | 93.88     | REW      |  |  |  |  |  |  |  |
| 43.6        | 96        |          |  |  |  |  |  |  |  |
| 46.0        | 97.34     |          |  |  |  |  |  |  |  |
| 50.0        | 99.24     |          |  |  |  |  |  |  |  |
| 55.0        | 100.28    |          |  |  |  |  |  |  |  |
| 67.0        | 100       | GS rebar |  |  |  |  |  |  |  |

|                                               | As-built |         |         |         |         |         |
|-----------------------------------------------|----------|---------|---------|---------|---------|---------|
| Summary Data Table                            | Mean     | M1 2005 | M2 2006 | M3 2007 | M4 2008 | M5 2009 |
| Bankfull Cross Sectional Area: Range 105 -136 | 120.5    | 132.60  | 134.30  | 141.40  |         |         |
| Bankfull Width: Range 33.3 - 41.2             | 37.25    | 56.20   | 55      | 37.4    |         |         |
| Bankfull Mean Depth: Range 3.1 - 3.3          | 3.2      | 2.40    | 2.4     | 3.8     |         |         |
| Bankfull Max Depth: Range 4.5 - 5.1           | 4.82     | 5.70    | 5.7     | 6.2     |         |         |
| Width/Depth Ratio: Range 10.7 - 12.5          | 11.6     | 23.80   | 22.60   | 9.90    |         |         |
| Entrenchment Ratio: Range 7.2 - 9.0           | 8.05     | 5.30    | 5.50    | 8.00    |         |         |
| Average Width of Flood Prone Area = 300       |          |         |         |         |         |         |




| 2005 Data<br>Station<br>54<br>38.7<br>33.1<br>28.8<br>19<br>14.3<br>14.2<br>10.8                                                                                        | Backshot<br>5.797        | HI<br>20.797 | Foreshot 6.996 8.404 10.478 13.245 10.445 5.465 5.349                                                                                   | 98.801<br>97.393<br>95.319<br>92.552<br>95.352<br>100.332                                                                                     | GS<br>RBF<br>REW<br>Thw<br>LEW<br>LBF | Width 43.2 27.9 22.3 18 8.2 3.5 3.4 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------|
| 2007 Data<br>0.0<br>6.0<br>15.0<br>19.0<br>22.0<br>23.8<br>25.3<br>26.0<br>27.6<br>30.0<br>32.0<br>37.0<br>41.3<br>42.3<br>42.1<br>44.6<br>48.0<br>51.0<br>55.0<br>66.0 |                          |              | 3.29<br>2.94<br>4.02<br>6<br>6.68<br>8.95<br>9.28<br>9.28<br>9.43<br>8.86<br>8.58<br>7.23<br>6.6<br>6.17<br>5.52<br>4.58<br>4.1<br>3.64 | 100.74<br>100.7<br>99.62<br>97.64<br>96.96<br>95.64<br>94.36<br>94.36<br>94.21<br>94.78<br>95.06<br>96.41<br>97.04<br>97.47<br>98.12<br>99.06 | GS rebar  LEW  Thw REW                |                                     |
|                                                                                                                                                                         | 2006 w<br>66<br>49<br>44 |              |                                                                                                                                         | 2006 e<br>100.00<br>98.81<br>97.38                                                                                                            | 2007 e<br>100.35<br>100.74            |                                     |

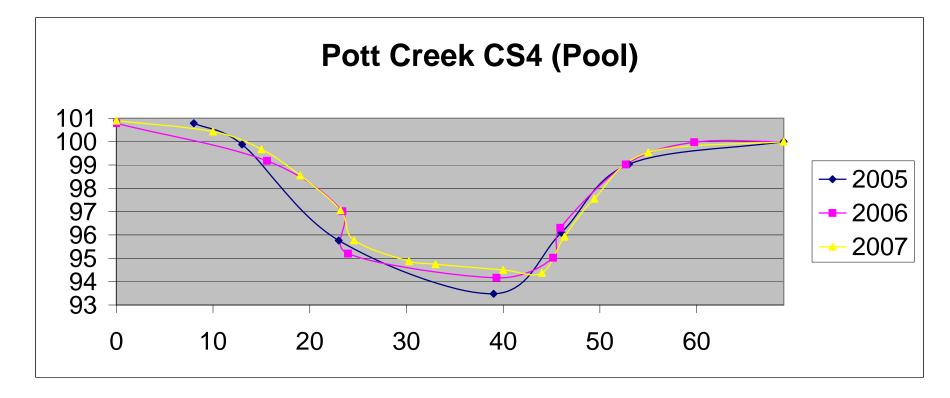
| 2006 Data |          |          |           |             |         |       |
|-----------|----------|----------|-----------|-------------|---------|-------|
| Point     | X        | Υ        | Elevation | Corrected E | Feature | Width |
| PC31      | 4980.128 | 5059.115 | 94.95965  | 100.46555   |         | 65.52 |
| PC32      | 4984.588 | 5043.472 | 94.50367  | 100.00957   | lbf     | 49.18 |
| PC33      | 4986.551 | 5036.454 | 90.89199  | 96.39789    | lew     | 43.59 |
| PC34      | 4987.25  | 5035.134 | 88.52315  | 94.02905    |         | 41.14 |
| PC35      | 4987.965 | 5033.315 | 88.95515  | 94.46105    |         | 38.46 |
| PC36      | 4987.846 | 5031.086 | 88.00485  | 93.51075    | Thw     | 29.07 |
| PC37      | 4990.353 | 5022.034 | 89.35064  | 94.85654    |         | 26.96 |
| PC38      | 4991.149 | 5019.476 | 91.46976  | 96.97566    | rew     | 25.02 |
| PC39      | 4992.295 | 5017.257 | 91.86973  | 97.37563    |         | 23.55 |
| PC310     | 4993.752 | 5011.854 | 93.30651  | 98.81241    | rbf     | 16.26 |
| PC311     | 4998.676 | 4996.276 | 94.4941   | 100         |         | 0.00  |

| 31.0 | 41 | 19 | 92.552 | 96.98  | 99.62 |
|------|----|----|--------|--------|-------|
| 41.0 | 38 | 22 | 95.319 | 94.96  | 97.64 |
| 45.0 | 29 | 24 | 97.393 | 93.51  | 96.96 |
| 51.0 | 27 | 25 | 98.801 | 94.46  | 95.64 |
| 66.0 | 25 | 26 | 100    | 94.03  | 94.69 |
|      | 24 | 28 |        | 96.39  | 94.36 |
|      | 16 | 30 |        | 100.00 | 94.36 |
|      | 0  | 32 |        | 100.47 | 94.21 |
|      |    | 37 |        |        | 94.78 |
|      |    | 41 |        |        | 95.06 |
|      |    | 42 |        |        | 96.41 |
|      |    | 43 |        |        | 97.04 |
|      |    | 45 |        |        | 97.47 |
|      |    | 48 |        |        | 98.12 |
|      |    | 51 |        |        | 99.06 |
|      |    | 55 |        |        | 99.54 |
|      |    | 66 |        |        | 100   |
|      |    |    |        |        |       |

| Survey Data |           |          |  |  |  |  |  |  |  |
|-------------|-----------|----------|--|--|--|--|--|--|--|
| Station     | Elevation | Feature  |  |  |  |  |  |  |  |
| 0.0         | 100.35    | GS rebar |  |  |  |  |  |  |  |
| 6.0         | 100.74    |          |  |  |  |  |  |  |  |
| 15.0        | 100.7     |          |  |  |  |  |  |  |  |
| 19.0        | 99.62     |          |  |  |  |  |  |  |  |
| 22.0        | 97.64     |          |  |  |  |  |  |  |  |
| 23.8        | 96.96     |          |  |  |  |  |  |  |  |
| 25.3        | 95.64     |          |  |  |  |  |  |  |  |
| 26.0        | 94.69     | LEW      |  |  |  |  |  |  |  |
| 27.6        | 94.36     |          |  |  |  |  |  |  |  |
| 30.0        | 94.36     |          |  |  |  |  |  |  |  |
| 32.0        | 94.21     | Thw      |  |  |  |  |  |  |  |
| 37.0        | 94.78     | REW      |  |  |  |  |  |  |  |
| 41.3        | 95.06     |          |  |  |  |  |  |  |  |
| 42.3        | 96.41     |          |  |  |  |  |  |  |  |
| 42.1        | 97.04     |          |  |  |  |  |  |  |  |
| 44.6        | 97.47     |          |  |  |  |  |  |  |  |
| 48.0        | 98.12     |          |  |  |  |  |  |  |  |
| 51.0        | 99.06     |          |  |  |  |  |  |  |  |
| 55.0        | 99.54     |          |  |  |  |  |  |  |  |
| 66.0        | 100       | GS rebar |  |  |  |  |  |  |  |

| Summary Data Table                      | As-built<br>Mean | M1 2005 | M2 2006 | M3 2007 | M4 2008 | M5 2009 |
|-----------------------------------------|------------------|---------|---------|---------|---------|---------|
| Bankfull Cross Sectional Area           | 152              | 136.80  | 141.50  | 110.00  |         |         |
| Bankfull Width: Range 33.3 - 41.2       | 37.25            | 39.80   | 49.2    | 35.9    |         |         |
| Bankfull Mean Depth: Range 3.1 - 3.3    | 3.2              | 3.40    | 2.90    | 3.1     |         |         |
| Bankfull Max Depth: Range 4.5 - 5.1     | 4.82             | 7.80    | 6.50    | 5.3     |         |         |
| Width/Depth Ratio: Range 10.7 - 12.5    | 11.6             | 11.60   | 17.10   | 11.70   |         |         |
| Entrenchment Ratio: Range 7.2 - 9.0     | 8.05             | 7.50    | 6.10    | 8.40    |         |         |
| Average Width of Flood Prone Area = 300 |                  |         |         |         |         |         |




| 2005 Data |          |        |          |           |          |       |
|-----------|----------|--------|----------|-----------|----------|-------|
| Station   | Backshot | HI     | Foreshot | Elevation | Feature  | Width |
| -10.5     | 4.49     | 19.49  |          | 100       | GS       | 0     |
| 6         |          |        | 5.46     | 99.03     | RTB      | 4.5   |
| 13.2      |          |        | 8.393    | 96.097    |          | 15.3  |
| 20.4      |          |        | 11.011   | 93.479    | Thw      | 30.5  |
| 35.6      |          |        | 8.724    | 95.766    |          | 37.7  |
| 46.4      |          |        | 4.613    | 99.877    | LTB      | 44.9  |
| 50.9      |          |        | 3.7      | 100.79    | GS       | 61.4  |
| 2007 Data |          |        |          |           |          |       |
| 69.0      |          |        | 4.28     | 100.00    | GS rebar |       |
| 55.0      |          |        | 4.74     | 99.54     |          |       |
| 49.4      |          |        | 6.73     | 97.55     |          |       |
| 46.3      |          |        | 8.35     |           | REW      |       |
| 44.0      |          |        | 9.9      | 94.38     | Thw      |       |
| 40.0      |          |        | 9.78     | 94.50     |          |       |
| 33.0      |          |        | 9.53     | 94.75     |          |       |
| 30.3      |          |        | 9.4      | 94.88     |          |       |
| 24.6      |          |        | 8.51     | 95.77     | LEW      |       |
| 23.2      |          |        | 7.22     | 97.06     |          |       |
| 19.0      |          |        | 5.73     | 98.55     |          |       |
| 15.0      |          |        | 4.61     | 99.67     |          |       |
| 10.0      |          |        | 3.85     | 100.43    |          |       |
| 0.0       |          |        | 3.38     | 100.90    | GS rebar |       |
| 2005 w    | 2006 w   | 2007 w | 2005 e   | 2006 e    | 2007 e   |       |
| 8         | 69       | 69     | 100.79   | 100       | 100.00   |       |
| 13        | 60       | 55     | 99.877   | 99.97281  | 99.54    |       |
| 23        | 53       | 49     | 95.766   | 99.02216  | 97.55    |       |
| 39        | 46       | 46     | 93.479   | 96.30711  | 95.93    |       |
| 46        | 45       | 44     | 96.097   | 95.02188  | 94.38    |       |
| 53        | 39       | 40     | 99.03    | 94.16638  | 94.50    |       |
| 69        | 24       | 33     | 100      | 95.20222  | 94.75    |       |
|           | 23       |        |          | 97.01393  | 94.88    |       |
|           | 16       |        |          | 99.17987  | 95.77    |       |
|           | 0        | 23     |          | 100.7875  | 97.06    |       |

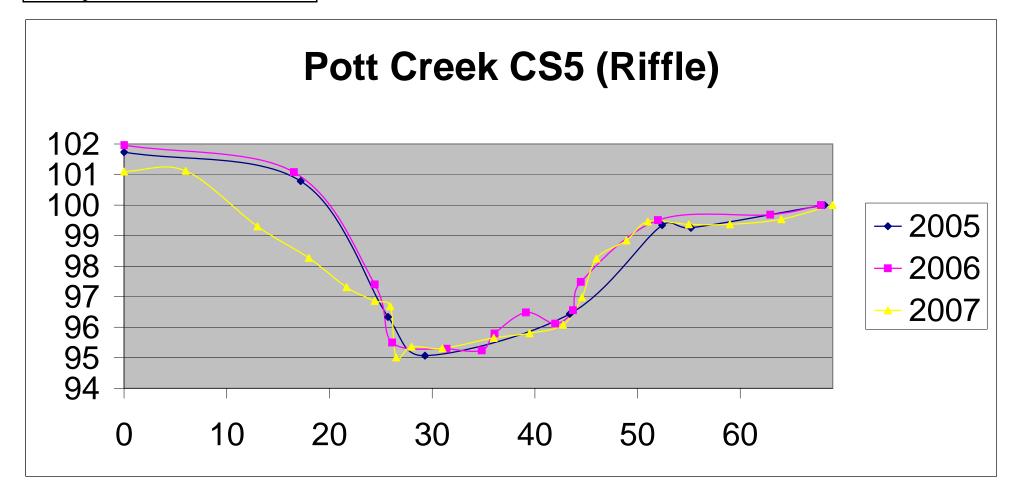
| 2006 Data |          |          |           |             |         |       |
|-----------|----------|----------|-----------|-------------|---------|-------|
| Point     | Χ        | Υ        | Elevation | Corrected E | Feature | Width |
| PC41      | 4987.725 | 5070.994 | 95.19477  | 100.78751   |         | 0.00  |
| PC42      | 4990.612 | 5055.683 | 93.58713  | 99.17987    | lbf     | 15.58 |
| PC43      | 4992     | 5048.013 | 91.42119  | 97.01393    |         | 23.38 |
| PC44      | 4992.219 | 5047.467 | 89.60948  | 95.20222    | lew     | 23.95 |
| PC45      | 4994.948 | 5032.348 | 88.57364  | 94.16638    |         | 39.31 |
| PC46      | 4996.179 | 5026.62  | 89.42914  | 95.02188    | thw     | 45.17 |
| PC47      | 4996.309 | 5025.906 | 90.71437  | 96.30711    | rew     | 45.90 |
| PC48      | 4997.894 | 5019.3   | 93.42942  | 99.02216    |         | 52.68 |
| PC49      | 4999.082 | 5012.322 | 94.38007  | 99.97281    | rbf     | 59.76 |
| PC410     | 5000.663 | 5002.92  | 94.40726  | 100         |         | 69.29 |

| 19<br>15 | 98.55<br>99.67 |  |
|----------|----------------|--|
| 10       | 100.43         |  |
| 0        | 100.90         |  |

| Survey Data |           |          |  |  |  |  |  |
|-------------|-----------|----------|--|--|--|--|--|
| Station     | Elevation | Feature  |  |  |  |  |  |
| 0.0         | 100.9     | GS rebar |  |  |  |  |  |
| 10.0        | 100.43    |          |  |  |  |  |  |
| 15.0        | 99.67     |          |  |  |  |  |  |
| 19.0        | 98.55     |          |  |  |  |  |  |
| 23.2        | 97.06     |          |  |  |  |  |  |
| 24.6        | 95.77     | LEW      |  |  |  |  |  |
| 30.3        | 94.88     |          |  |  |  |  |  |
| 33.0        | 94.75     |          |  |  |  |  |  |
| 40.0        | 94.5      |          |  |  |  |  |  |
| 44.0        | 94.38     | Thw      |  |  |  |  |  |
| 46.3        | 95.93     | REW      |  |  |  |  |  |
| 49.4        | 97.55     |          |  |  |  |  |  |
| 55.0        | 99.54     |          |  |  |  |  |  |
| 69.0        | 100       | GS rebar |  |  |  |  |  |

|                                         | As-built |         |         |         |         |         |
|-----------------------------------------|----------|---------|---------|---------|---------|---------|
| Summary Data Table                      | Mean     | M1 2005 | M2 2006 | M3 2007 | M4 2008 | M5 2009 |
| Bankfull Cross Sectional Area           | 152      | 156.60  | 154.80  | 151.30  |         |         |
| Bankfull Width: Range 33.3 - 41.2       | 37.25    | 44.30   | 51.90   | 56.2    |         |         |
| Bankfull Mean Depth: Range 3.1 - 3.3    | 3.2      | 3.50    | 3.00    | 2.7     |         |         |
| Bankfull Max Depth: Range 4.5 - 5.1     | 4.82     | 6.40    | 5.80    | 5.6     |         |         |
| Width/Depth Ratio: Range 10.7 - 12.5    | 11.6     | 12.50   | 17.40   | 20.90   |         |         |
| Entrenchment Ratio: Range 7.2 - 9.0     | 8.05     | 6.80    | 5.80    | 5.30    |         |         |
| Average Width of Flood Prone Area = 300 |          |         |         |         |         |         |




| 2005 Data    |             |        |              |           |          |       |
|--------------|-------------|--------|--------------|-----------|----------|-------|
| Station      | Backshot    | HI     | Foreshot     | Elevation | Feature  | Width |
| 80.7         | 7.585       | 22.585 |              | 100.00    | GS       | 68.2  |
| 67.7         |             |        | 8.332        | 99.25     | GS       | 55.2  |
| 64.9         |             |        | 8.243        | 99.34     | RTB      | 52.4  |
| 55.9         |             |        | 11.148       | 96.44     |          | 43.4  |
| 41.8         |             |        | 12.515       | 95.07     | Thw      | 29.3  |
| 38.2         |             |        | 11.248       | 96.34     |          | 25.7  |
| 29.7         |             |        | 6.803        |           |          | 17.2  |
| 12.5         |             |        | 5.852        | 101.73    | GS       | 0     |
|              | ot be equal |        |              |           |          |       |
| Break over   | sand bar    |        |              |           |          |       |
| 2007 Data    |             |        |              |           |          |       |
| 69.0         |             |        | 5.46         | 100.00    | GS rebar |       |
| 64.0         |             |        | 5.92         | 99.54     |          |       |
| 59.0         |             |        | 6.09         | 99.37     |          |       |
| 55.0         |             |        | 6.09         | 99.37     |          |       |
| 51.0         |             |        | 6            | 99.46     |          |       |
| 48.9         |             |        | 6.62         | 98.84     |          |       |
| 46.0         |             |        | 7.21         | 98.25     |          |       |
| 44.6         |             |        | 8.48         | 96.98     | REW      |       |
| 42.8         |             |        | 9.38         | 96.08     |          |       |
| 39.5         |             |        | 9.66         | 95.80     |          |       |
| 36.0         |             |        | 9.81         | 95.65     |          |       |
| 31.0         |             |        | 10.15        | 95.31     |          |       |
| 28.0         |             |        | 10.1         | 95.36     |          |       |
| 26.5         |             |        | 10.45        | 95.01     | LEW      |       |
| 25.9         |             |        | 8.77         |           |          |       |
| 24.4         |             |        | 8.6          | 96.86     |          |       |
| 21.7<br>18.0 |             |        | 8.15         | 97.31     |          |       |
| 13.0         |             |        | 7.19<br>6.16 | 98.27     |          |       |
| 6.0          |             |        | 4.34         |           |          |       |
| 0.0          |             |        | 4.34         |           | GS rebar |       |
| 0.0          |             |        | 7.50         | 101.10    | OO ICDAI |       |
| 2005 w       | 2006 w      | 2007 w | 2005 e       | 2006 e    | 2007 e   |       |
| 68           | 0           | 69     | 100.00       | 101.96    | 100.00   |       |
| 55           |             | 64     | 99.25        | 101.08    | 99.54    |       |
| 52           |             | 59     | 99.34        | 97.40     | 99.37    |       |
| 43           |             | 55     | 96.44        | 95.50     | 99.37    |       |
| 29           |             | 51     | 95.07        | 95.29     | 99.46    |       |
| 26           | 35          | 49     | 96.34        | 95.24     | 98.84    |       |

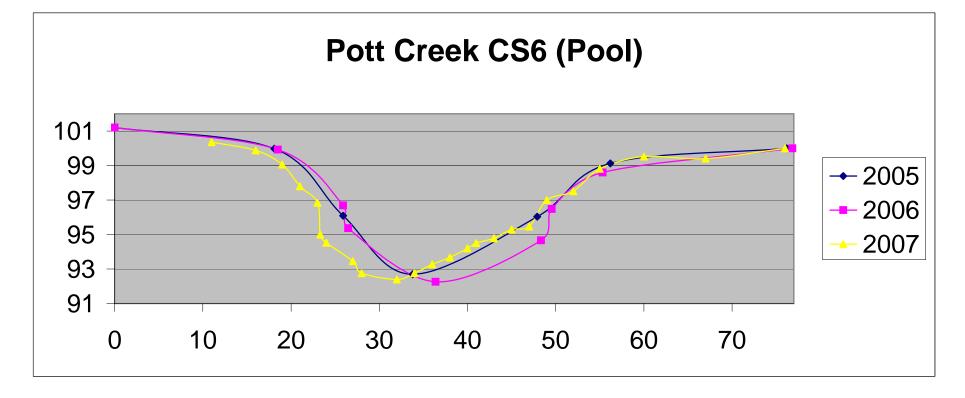
| 2006 Data |          |          |           |             |          |       |
|-----------|----------|----------|-----------|-------------|----------|-------|
| Point     | Χ        | Υ        | Elevation | Corrected E | Feature  | Width |
| PC51      | 5008.841 | 4992.711 | 95.74474  | 101.96392   | lbf      | 0.00  |
| PC52      | 4994.003 | 5000.081 | 94.85883  | 101.07801   |          | 16.55 |
| PC53      | 4987.325 | 5004.249 | 91.17889  | 97.39807    | lew      | 24.41 |
| PC54      | 4985.913 | 5005.207 | 89.28146  | 95.50064    |          | 26.11 |
| PC55      | 4981.094 | 5007.434 | 89.07554  | 95.29472    |          | 31.40 |
| PC56      | 4978.111 | 5009.131 | 89.02411  | 95.24329    |          | 34.84 |
| PC57      | 4977.08  | 5009.835 | 89.57124  | 95.79042    |          | 36.08 |
| PC58      | 4974.304 | 5011.121 | 90.26662  | 96.4858     | sand bar | 39.13 |
| PC59      | 4971.641 | 5012.213 | 89.89936  | 96.11854    |          | 41.99 |
| PC510     | 4970.008 | 5012.827 | 90.33597  | 96.55515    |          | 43.71 |
| PC511     | 4969.386 | 5013.277 | 91.26472  | 97.4839     | rew      | 44.48 |
| PC512     | 4962.533 | 5016.419 | 93.28916  | 99.50834    | rbf      | 51.99 |
| PC513     | 4953.002 | 5021.774 | 93.46448  | 99.68366    |          | 62.92 |
| PC514     | 4948.692 | 5024.177 | 93.78082  | 100         |          | 67.86 |

| 17 | 36 | 46 | 100.78 | 95.79  | 98.25  |
|----|----|----|--------|--------|--------|
| 0  | 39 | 45 | 101.73 | 96.49  | 96.98  |
|    | 42 | 43 |        | 96.12  | 96.08  |
|    | 44 | 40 |        | 96.56  | 95.80  |
|    | 44 | 36 |        | 97.48  | 95.65  |
|    | 52 | 31 |        | 99.51  | 95.31  |
|    | 63 | 28 |        | 99.68  | 95.36  |
|    | 68 | 27 |        | 100.00 | 95.01  |
|    |    | 26 |        |        | 96.69  |
|    |    | 24 |        |        | 96.86  |
|    |    | 22 |        |        | 97.31  |
|    |    | 18 |        |        | 98.27  |
|    |    | 13 |        |        | 99.30  |
|    |    | 6  |        |        | 101.12 |
|    |    | 0  |        |        | 101.10 |

|         | Survey Dat | ta .     |
|---------|------------|----------|
| Station | Elevation  | Feature  |
| 0.0     | 101.1      | GS rebar |
| 6.0     | 101.12     |          |
| 13.0    | 99.3       |          |
| 18.0    | 98.27      |          |
| 21.7    | 97.31      |          |
| 24.4    | 96.86      |          |
| 25.9    | 96.69      |          |
| 26.5    | 95.01      | LEW      |
| 28.0    | 95.36      | Thw      |
| 31.0    | 95.31      |          |
| 36.0    | 95.65      |          |
| 39.5    | 95.8       |          |
| 42.8    | 96.08      |          |
| 44.6    | 96.98      | REW      |
| 46.0    | 98.25      |          |
| 48.9    | 98.84      |          |
| 51.0    | 99.46      |          |
| 55.0    | 99.37      |          |
| 59.0    | 99.37      |          |
| 64.0    | 99.54      |          |
| 69.0    | 100        | GS rebar |

|                                               | As-built |         |         |         |         |         |
|-----------------------------------------------|----------|---------|---------|---------|---------|---------|
| Summary Data Table                            | Mean     | M1 2005 | M2 2006 | M3 2007 | M4 2008 | M5 2009 |
| Bankfull Cross Sectional Area: Range 105 -136 | 120.5    | 114.00  | 106.90  | 126.90  |         |         |
| Bankfull Width: Range 33.3 - 41.2             | 37.25    | 49.50   | 49      | 58.7    |         |         |
| Bankfull Mean Depth: Range 3.1 - 3.3          | 3.2      | 2.30    | 2.2     | 2.2     |         |         |
| Bankfull Max Depth: Range 4.5 - 5.1           | 4.82     | 4.90    | 4.8     | 5       |         |         |
| Width/Depth Ratio: Range 10.7 - 12.5          | 11.6     | 21.50   | 22.50   | 27.10   |         |         |
| Entrenchment Ratio: Range 7.2 - 9.0           | 8.05     | 6.10    | 6.10    | 5.10    |         |         |
| Average Width of Flood Prone Area = 300       |          |         |         |         |         |         |




| 2005 Data      |          |        |          |           |             |       |
|----------------|----------|--------|----------|-----------|-------------|-------|
| Station        | Backshot | HI     | Foreshot | Elevation | Feature     | Width |
| 82.2           | 6.889    | 21.889 |          | 100       | GS          | 76.2  |
| 62.2           |          |        | 7.765    | 99.124    | RTB         | 56.2  |
| 53.9           |          |        | 10.857   | 96.032    |             | 47.9  |
| 39.8           |          |        | 14.19    | 92.699    | Thw         | 33.8  |
| 31.9           |          |        | 10.795   | 96.094    |             | 25.9  |
| 24.1           |          |        | 6.907    | 99.98     | LTB         | 18.1  |
| 6              |          |        | 5.691    | 101.2     | GS          | 0     |
| 2007 Data      |          |        |          |           |             |       |
| 2007 Data<br>0 |          |        | 2.86     | 100.36    | GS reset no | rehar |
| 5              |          |        | 3.34     | 99.88     | 00 10001110 | 10001 |
| 8              |          |        | 4.16     | 99.06     |             |       |
| 10             |          |        | 5.42     | 97.8      |             |       |
| 12             |          |        | 6.38     | 96.84     | LEW         |       |
| 12.3           |          |        | 8.22     | 95        | SOW         |       |
| 13.0           |          |        | 8.7      | 94.52     |             |       |
| 14.6           |          |        | 9.76     | 93.46     |             |       |
| 17.4           |          |        | 10.46    | 92.76     |             |       |
| 21.1           |          |        | 10.82    | 92.4      | Thw         |       |
| 23             |          |        | 10.46    | 92.76     |             |       |
| 25             |          |        | 9.95     | 93.27     |             |       |
| 27             |          |        | 9.55     | 93.67     |             |       |
| 29             |          |        | 9.02     | 94.2      |             |       |
| 31             |          |        | 8.71     | 94.51     |             |       |
| 32             |          |        | 8.44     | 94.78     |             |       |
| 34             |          |        | 7.93     | 95.29     | REW         |       |
| 36             |          |        | 7.76     | 95.46     |             |       |
| 38             |          |        | 6.22     | 97        |             |       |
| 40.5           |          |        | 5.71     | 97.51     |             |       |
| 44             |          |        | 4.41     | 98.81     |             |       |
| 49             |          |        | 3.7      | 99.52     |             |       |
| 56             |          |        | 3.82     | 99.4      |             |       |
| 65             |          |        | 3.22     | 100       | GS rebar    |       |
| 2005 w         | 2006 w   | 2007 w | 2005 e   | 2006 e    | 2007 e      |       |

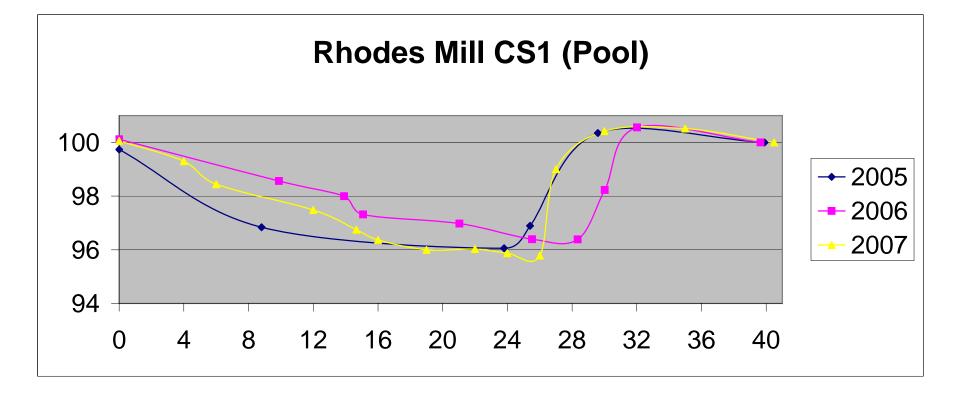
| 2006 Data |          |          |           |                    |         |
|-----------|----------|----------|-----------|--------------------|---------|
| Point     | Χ        | Υ        | Elevation | Corrected E Featur | e Width |
| PC61      | 5012.852 | 4994.61  | 95.64714  | 101.19915          | 0.00    |
| PC62      | 4998.254 | 5005.994 | 94.36622  | 99.91823 LBF       | 18.51   |
| PC63      | 4992.564 | 5010.706 | 91.13655  | 96.68856           | 25.90   |
| PC64      | 4992.167 | 5011.149 | 89.8149   | 95.36691 LEW       | 26.48   |
| PC65      | 4984.34  | 5017.221 | 86.70749  | 92.2595 THW        | 36.39   |
| PC66      | 4974.784 | 5024.409 | 89.11025  | 94.66226 REW       | 48.34   |
| PC67      | 4973.861 | 5025.191 | 90.93076  | 96.48277           | 49.55   |
| PC68      | 4969.641 | 5029.167 | 93.04645  | 98.59846           | 55.33   |
| PC69      | 4952.788 | 5042.515 | 94.44799  | 100 RBF            | 76.83   |

| 76 | 0  | 11   | 100    | 101.20 | 100.36 |
|----|----|------|--------|--------|--------|
| 56 | 19 | 16   | 99.124 | 99.92  | 99.88  |
| 48 | 26 | 19   | 96.032 | 96.69  | 99.06  |
| 34 | 26 | 21   | 92.699 | 95.37  | 97.8   |
| 26 | 36 | 23   | 96.094 | 92.26  | 96.84  |
| 18 | 48 | 23.3 | 99.98  | 94.66  | 95     |
| 0  | 50 | 24.0 | 101.2  | 96.48  | 94.52  |
|    | 55 | 27.0 |        | 98.60  | 93.46  |
|    | 77 | 28.0 |        | 100.00 | 92.76  |
|    |    | 32   |        |        | 92.4   |
|    |    | 34   |        |        | 92.76  |
|    |    | 36   |        |        | 93.27  |
|    |    | 38   |        |        | 93.67  |
|    |    | 40   |        |        | 94.2   |
|    |    | 41   |        |        | 94.51  |
|    |    | 43   |        |        | 94.78  |
|    |    | 45   |        |        | 95.29  |
|    |    | 47   |        |        | 95.46  |
|    |    | 49   |        |        | 97     |
|    |    | 52   |        |        | 97.51  |
|    |    | 55   |        |        | 98.81  |
|    |    | 60   |        |        | 99.52  |
|    |    | 67   |        |        | 99.4   |
|    |    | 76   |        |        | 100    |

| Survey Data |           |             |  |  |
|-------------|-----------|-------------|--|--|
| Station     | Elevation | Feature     |  |  |
| 11          | 100.36    | GS no rebar |  |  |
| 16          | 99.88     |             |  |  |
| 19          | 99.06     |             |  |  |
| 21          | 97.8      |             |  |  |
| 23          | 96.84     | LEW         |  |  |
| 23.3        | 95        | SOW         |  |  |
| 24.0        | 94.52     |             |  |  |
| 27.0        | 93.46     |             |  |  |
| 28.0        | 92.76     |             |  |  |
| 32          | 92.4      | Thw         |  |  |
| 34          | 92.76     |             |  |  |
| 36          | 93.27     |             |  |  |
| 38          | 93.67     |             |  |  |
| 40          | 94.2      |             |  |  |
| 41          | 94.51     |             |  |  |
| 43          | 94.78     |             |  |  |
| 45          | 95.29     | REW         |  |  |
| 47          | 95.46     |             |  |  |
| 49          | 97        |             |  |  |
| 52          | 97.51     |             |  |  |
| 55          | 98.81     |             |  |  |
| 60          | 99.52     |             |  |  |
| 67          | 99.4      |             |  |  |
| 76          | 100       | GS rebar    |  |  |

|                                         | As-built |         |         |         |         |         |
|-----------------------------------------|----------|---------|---------|---------|---------|---------|
| Summary Data Table                      | Mean     | M1 2005 | M2 2006 | M3 2007 | M4 2008 | M5 2009 |
| Bankfull Cross Sectional Area           | 152      | 126.50  | 124.20  | 136.90  |         |         |
| Bankfull Width: Range 33.3 - 41.2       | 37.25    | 36.40   | 33.8    | 35.6    |         |         |
| Bankfull Mean Depth: Range 3.1 - 3.3    | 3.2      | 3.50    | 3.7     | 3.8     |         |         |
| Bankfull Max Depth: Range 4.5 - 5.1     | 4.82     | 6.40    | 6.3     | 6.4     |         |         |
| Width/Depth Ratio: Range 10.7 - 12.5    | 11.6     | 10.50   | 9.20    | 9.30    |         |         |
| Entrenchment Ratio: Range 7.2 - 9.0     | 8.05     | 8.20    | 8.90    | 8.40    |         |         |
| Average Width of Flood Prone Area = 300 |          |         |         | _       |         | _       |




| 2005 Data<br>Station<br>45.5<br>35.2<br>31<br>29.4<br>14.4<br>5.6 | Backshot<br>5.11 | HI<br>15.11 | Foreshot<br>4.76<br>8.22<br>9.053<br>8.273<br>5.377 | 100.00<br>100.35<br>96.89<br>96.06<br>96.84 | LTB<br>Thw | Width 39.9 29.6 25.4 23.8 8.8 0 |
|-------------------------------------------------------------------|------------------|-------------|-----------------------------------------------------|---------------------------------------------|------------|---------------------------------|
| 2007 Data<br>40.5                                                 |                  |             | 3.5                                                 | 100.00                                      | GS         |                                 |
| 35                                                                |                  |             | 2.98                                                | 100.52                                      |            |                                 |
| 30                                                                |                  |             | 3.08                                                | 100.42                                      |            |                                 |
| 27                                                                |                  |             | 4.5                                                 | 99.00                                       |            |                                 |
| 26                                                                |                  |             | 7.72                                                | 95.78                                       | LEW        |                                 |
| 24                                                                |                  |             | 7.63                                                | 95.87                                       |            |                                 |
| 22                                                                |                  |             | 7.47                                                | 96.03                                       |            |                                 |
| 19                                                                |                  |             | 7.5                                                 | 96.00                                       |            |                                 |
| 16                                                                |                  |             | 7.13                                                | 96.37                                       | REW        |                                 |
| 14.7                                                              |                  |             | 6.75                                                | 96.75                                       |            |                                 |
| 12                                                                |                  |             | 6.02                                                | 97.48                                       |            |                                 |
| 6                                                                 |                  |             | 5.06                                                | 98.44                                       |            |                                 |
| 4                                                                 |                  |             | 4.2                                                 | 99.30                                       |            |                                 |
| 0                                                                 |                  |             | 3.44                                                | 100.06                                      | GS         |                                 |
| 2005 W                                                            | 2006 W 20        | 007 W       | 2005 E                                              | 2006 E                                      | 2007 E     |                                 |
| 40                                                                | 40               | 41          | 100.00                                              | 100.00                                      | 100.00     |                                 |
| 30                                                                | 32               | 35          | 100.35                                              | 100.56                                      | 100.52     |                                 |
| 25                                                                | 30               | 30          | 96.89                                               | 98.23                                       | 100.42     |                                 |
| 24                                                                | 28               | 27          | 96.06                                               | 96.38                                       | 99.00      |                                 |
| 9                                                                 | 26               | 26          | 96.84                                               | 96.39                                       | 95.78      |                                 |
| 0                                                                 | 21               | 24          | 99.73                                               | 96.98                                       | 95.87      |                                 |
|                                                                   | 15               | 22          |                                                     | 97.32                                       | 96.03      |                                 |
|                                                                   | 14               | 19          |                                                     | 98.00                                       | 96.00      |                                 |
|                                                                   | 10               | 16          |                                                     | 98.56                                       | 96.37      |                                 |
|                                                                   | 0                | 15          |                                                     | 100.12                                      | 96.75      |                                 |
|                                                                   |                  | 12          |                                                     |                                             | 97.48      |                                 |

| 2006 Data |          |          |           |             |         |       |
|-----------|----------|----------|-----------|-------------|---------|-------|
| Point     | Χ        | Υ        | Elevation | Corrected E | Feature | Width |
| RM11      | 5027.367 | 4962.208 | 93.745    | 100         |         | 39.65 |
| RM12      | 5021.332 | 4970.033 | 94.30578  | 100.56078   | lbf     | 32.02 |
| RM13      | 5018.582 | 4972.999 | 91.97382  | 98.22882    |         | 30.02 |
| RM14      | 5017.772 | 4973.847 | 90.12935  | 96.38435    | lew     | 28.35 |
| RM15      | 5014.106 | 4978.554 | 90.13327  | 96.38827    | thw     | 25.53 |
| RM16      | 5011.177 | 4981.959 | 90.72113  | 96.97613    | rew     | 21.04 |
| RM17      | 5009.565 | 4984.278 | 91.06062  | 97.31562    |         | 15.08 |
| RM18      | 5008.744 | 4985.756 | 91.74026  | 97.99526    |         | 13.91 |
| RM19      | 5007.711 | 4987.488 | 92.30816  | 98.56316    |         | 9.88  |
| RM110     | 5003.917 | 4994.19  | 93.86134  | 100.11634   | rbf     | 0.00  |

| 6 | 98.44  |
|---|--------|
| 4 | 99.30  |
| 0 | 100.06 |

| Survey Data |           |         |  |  |  |  |
|-------------|-----------|---------|--|--|--|--|
| Station     | Elevation | Feature |  |  |  |  |
| 0           | 100.06    | GS      |  |  |  |  |
| 4           | 99.30     |         |  |  |  |  |
| 6           | 98.44     | rbf     |  |  |  |  |
| 12          | 97.48     |         |  |  |  |  |
| 14.7        | 96.75     |         |  |  |  |  |
| 16          | 96.37     | REW     |  |  |  |  |
| 19          | 96.00     |         |  |  |  |  |
| 22          | 96.03     |         |  |  |  |  |
| 24          | 95.87     |         |  |  |  |  |
| 26          | 95.78     | LEW     |  |  |  |  |
| 27          | 99.00     | Lbf     |  |  |  |  |
| 30          | 100.42    |         |  |  |  |  |
| 35          | 100.52    |         |  |  |  |  |
| 40.5        | 100.00    | GS      |  |  |  |  |

| Summary Data Table                      | As-built<br>Mean | M1 2005 | M2 2006 | M3 2007 | M4 2008 | M5 2009 |
|-----------------------------------------|------------------|---------|---------|---------|---------|---------|
| Bankfull Cross Sectional Area           | 50               | 72.20   | 66.20   | 53.20   |         |         |
| Bankfull Width                          | 32               | 28.90   | 31      | 23.6    |         |         |
| Bankfull Mean Depth                     | 2.19             | 2.50    | 2.1     | 2.3     |         |         |
| Bankfull Max Depth                      | 3.15             | 3.70    | 3.7     | 3.5     |         |         |
| Width/Depth Ratio                       | 14.6             | 11.50   | 14.60   | 10.50   |         |         |
| Entrenchment Ratio                      | 9.38             | 10.40   | 9.70    | 12.70   |         |         |
| Average Width of Flood Prone Area = 300 |                  |         |         |         |         |         |



| 2005 data |          |        |          |           |         |       |
|-----------|----------|--------|----------|-----------|---------|-------|
| Station   | Backshot | HI     | Foreshot | Elevation | Feature | Width |
| 50.6      | 5.098    | 15.098 |          | 100.00    | GS      | 43.9  |
| 41.5      |          |        | 5.415    | 99.68     | RTB     | 34.8  |
| 38        |          |        | 7.153    | 97.95     |         | 31.3  |
| 35.6      |          |        | 7.953    | 97.15     |         | 28.9  |
| 34.5      |          |        | 8.776    | 96.32     |         | 27.8  |
| 29.8      |          |        | 9.64     | 95.46     |         | 23.1  |
| 24.1      |          |        | 8.702    | 96.40     |         | 17.4  |
| 20.3      |          |        | 8.005    | 97.09     |         | 13.6  |
| 19.7      |          |        | 7.3      | 97.80     |         | 13    |
| 6.7       |          |        | 5.068    | 100.03    | LTB     | 0     |
| 2007 Data |          |        |          |           |         |       |
| 0         |          |        | 3.71     | 100       | GS      |       |
| 5         |          |        | 4.76     | 98.95     |         |       |
| 9         |          |        | 5.44     | 98.27     |         |       |
| 13        |          |        | 5.8      | 97.91     |         |       |
| 16        |          |        | 6.93     | 96.78     |         |       |
| 18.0      |          |        | 7.63     | 96.08     | REW     |       |
| 20.3      |          |        | 8.03     | 95.68     |         |       |
| 23.0      |          |        | 7.97     | 95.74     |         |       |
| 26.0      |          |        | 8.08     | 95.63     | Thw     |       |
| 28.0      |          |        | 8.22     | 95.49     | LEW     |       |
| 28.3      |          |        | 7.67     | 96.04     |         |       |
| 29.5      |          |        | 6.3      | 97.41     |         |       |
| 32.0      |          |        | 5.26     | 98.45     |         |       |
| 35.0      |          |        | 3.65     |           |         |       |
| 39        |          |        | 3.35     | 100.36    |         |       |
| 44.5      |          |        | 3.3      | 100.41    | GS      |       |
|           |          |        |          |           |         |       |
|           |          | 07 W   | 2005 E   | 2006 E    | 2007 E  |       |
| 44        | 43       | 0      | 100.00   | 100.00    |         |       |
| 35        | 29       | 5      | 97.56    | 97.56     |         |       |
| 31        | 27       | 9      | 97.14    | 97.14     |         |       |
| 29        | 26       | 13     | 96.55    | 96.55     | 98.45   | 5     |

| RM22 | 5029.08  | 4973.893 | 94.40695 | 100.10369 lbf | 28.64 |
|------|----------|----------|----------|---------------|-------|
| RM23 | 5023.627 | 4978.057 | 91.84569 | 97.54243      | 26.96 |
| RM24 | 5022.915 | 4978.964 | 90.58399 | 96.28073 lew  | 26.22 |
| RM25 | 5018.775 | 4981.602 | 89.77666 | 95.4734 thw   | 25.04 |
| RM26 | 5015.152 | 4984.809 | 90.4377  | 96.13444 rew  | 20.20 |
| RM27 | 5014.337 | 4985.664 | 90.85671 | 96.55345      | 15.35 |
| RM28 | 5013.661 | 4986.027 | 91.445   | 97.14174      | 14.22 |
| RM29 | 5012.454 | 4987.196 | 91.86787 | 97.56461      | 7.38  |

Point X Y Elevation Corrected E Feature Width

5035.185 4969.661 94.26488 99.96162

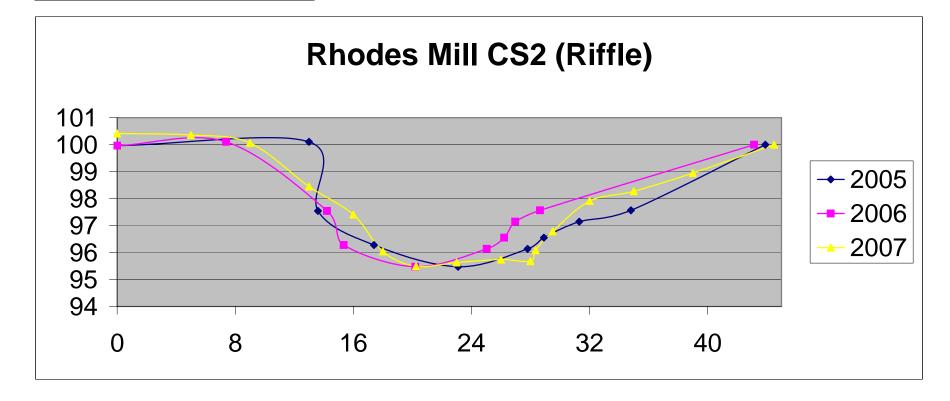
5001.731 4996.969 94.30326

2006 Data

RM21

RM210

5.69674


100 rbf

43.15

| 28 | 25 | 16 | 96.13  | 96.13  | 97.41 |
|----|----|----|--------|--------|-------|
| 23 | 20 | 18 | 95.47  | 95.47  | 96.04 |
| 17 | 15 | 20 | 96.28  | 96.28  | 95.49 |
| 14 | 14 | 23 | 97.54  | 97.54  | 95.63 |
| 13 | 7  | 26 | 100.10 | 100.10 | 95.74 |
| 0  | 0  | 28 | 99.96  | 99.96  | 95.68 |
|    |    | 28 |        |        | 96.08 |
|    |    | 30 |        |        | 96.78 |
|    |    | 32 |        |        | 97.91 |
|    |    | 35 |        |        | 98.27 |
|    |    | 39 |        |        | 98.95 |
|    |    | 45 |        |        | 100   |

| Survey Data |           |         |  |  |  |
|-------------|-----------|---------|--|--|--|
| Station     | Elevation | Feature |  |  |  |
| 0           | 100       | GS      |  |  |  |
| 5           | 98.95     |         |  |  |  |
| 9           | 98.27     |         |  |  |  |
| 13          | 97.91     | rbf     |  |  |  |
| 16          | 96.78     |         |  |  |  |
| 18.0        | 96.08     | REW     |  |  |  |
| 20.3        | 95.68     |         |  |  |  |
| 23.0        | 95.74     |         |  |  |  |
| 26.0        | 95.63     | Thw     |  |  |  |
| 28.0        | 95.49     | LEW     |  |  |  |
| 28.3        | 96.04     |         |  |  |  |
| 29.5        | 97.41     |         |  |  |  |
| 32.0        | 98.45     | lbf     |  |  |  |
| 35.0        | 100.06    |         |  |  |  |
| 39          | 100.36    |         |  |  |  |
| 44.5        | 100.41    | GS      |  |  |  |

| Summary Data Table                      | As-built<br>Mean | M1 2005 | M2 2006 | M3 2007 | M4 2008 | M5 2009 |
|-----------------------------------------|------------------|---------|---------|---------|---------|---------|
| Bankfull Cross Sectional Area           | 70               | 73.50   | 80.70   | 88.50   |         |         |
| Bankfull Width                          | 32               | 32.80   | 37.5    | 35      |         |         |
| Bankfull Mean Depth                     | 2.19             | 2.20    | 2.2     | 2.5     |         |         |
| Bankfull Max Depth                      | 3.15             | 4.20    | 4.5     | 4.6     |         |         |
| Width/Depth Ratio                       | 14.6             | 14.60   | 17.40   | 13.80   |         |         |
| Entrenchment Ratio                      | 9.38             | 9.20    | 8.00    | 8.60    |         |         |
| Average Width of Flood Prone Area = 300 |                  |         |         | _       |         |         |



| 2005 Data |          |        |          |           |          |       | 2006 Dat | a        |          |           |   |
|-----------|----------|--------|----------|-----------|----------|-------|----------|----------|----------|-----------|---|
| Station   | Backshot | HI     | Foreshot | Elevation | Feature  | Width | Point    | Χ        | Υ        | Elevation | C |
| 24.7      | 5.042    | 15.042 |          | 100.00    | GS       | 18.5  | UT11     | 4989.308 |          |           |   |
| 20.3      |          |        | 5.261    | 99.78     | LTB      | 14.1  | UT12     | 4985.965 | 4997.729 | 94.21897  |   |
| 16.6      |          |        | 6.593    | 98.45     |          | 10.4  | UT13     | 4984.7   | 4998.792 | 93.31888  |   |
| 13.9      |          |        | 7.196    | 97.85     | Ctr      | 7.7   | UT14     | 4982.86  | 5001.042 | 93.027    |   |
| 13.1      |          |        | 6.58     | 98.46     |          | 6.9   | UT15     | 4981.416 | 5002.741 | 93.34605  |   |
| 11.1      |          |        | 5.343    | 99.70     | RTB      | 4.9   | UT16     | 4979.882 | 5004.973 | 94.48612  |   |
| 6.2       |          |        | 4.931    | 100.11    | GS       | 0     | UT17     | 4977.116 | 5008.322 | 94.8248   |   |
| 2007 Data |          |        |          |           |          |       |          |          |          |           |   |
| 19.5      |          |        | 4.1      | 100.00    | GS rebar |       |          |          |          |           |   |
| 16.5      |          |        | 4.22     | 99.88     |          |       |          |          |          |           |   |
| 13.8      |          |        | 4.8      | 99.30     |          |       |          |          |          |           |   |
| 11.0      |          |        | 5.53     | 98.57     |          |       |          |          |          |           |   |
| 9.7       |          |        | 6.07     | 98.03     | LEW      |       |          |          |          |           |   |
| 9.4       |          |        | 6.12     | 97.98     |          |       |          |          |          |           |   |
| 8.6       |          |        | 6.23     | 97.87     |          |       |          |          |          |           |   |
| 7.9       |          |        | 6.27     | 97.83     | REW      |       |          |          |          |           |   |
| 7.3       |          |        | 5.72     | 98.38     |          |       |          |          |          |           |   |
| 6.0       |          |        | 4.8      | 99.30     |          |       |          |          |          |           |   |
| 4.0       |          |        | 4.26     | 99.84     |          |       |          |          |          |           |   |
| 0.0       |          |        | 4.04     | 100.06    | GS rebar |       |          |          |          |           |   |
| 2005 w    | 2006 w 2 | 2007 w | 2005 e   | 2006 e    | 2007 e   |       |          |          |          |           |   |
| 19        | 19       | 20     | 100.00   | 100.00    | 100.00   |       |          |          |          |           |   |
| 14        | 15       | 17     | 99.78    | 99.60     | 99.88    |       |          |          |          |           |   |
| 10        | 12       | 14     | 98.45    | 98.70     | 99.30    |       |          |          |          |           |   |
| 8         | 10       | 11     | 97.85    | 98.41     | 98.57    |       |          |          |          |           |   |
| 7         | 7        | 10     | 98.46    | 98.73     | 98.03    |       |          |          |          |           |   |
| 5         | 5        | 9      | 99.70    | 99.87     | 97.98    |       |          |          |          |           |   |
| 0         | 0        | 9      | 100.11   | 100.21    | 97.87    |       |          |          |          |           |   |
|           |          | 8      |          |           | 97.83    |       |          |          |          |           |   |
|           |          | 7      |          |           | 98.38    |       |          |          |          |           |   |
|           |          | 6      |          |           | 99.30    |       |          |          |          |           |   |
|           |          | 4      |          |           | 99.84    |       |          |          |          |           |   |
|           |          | 0      |          |           | 100.06   | )     |          |          |          |           |   |

Elevation Corrected E Feature

100 GS

99.59987 LTB

98.4079 Ctr

99.86702 RTB

100.2057 GS

5.3809

98.69978

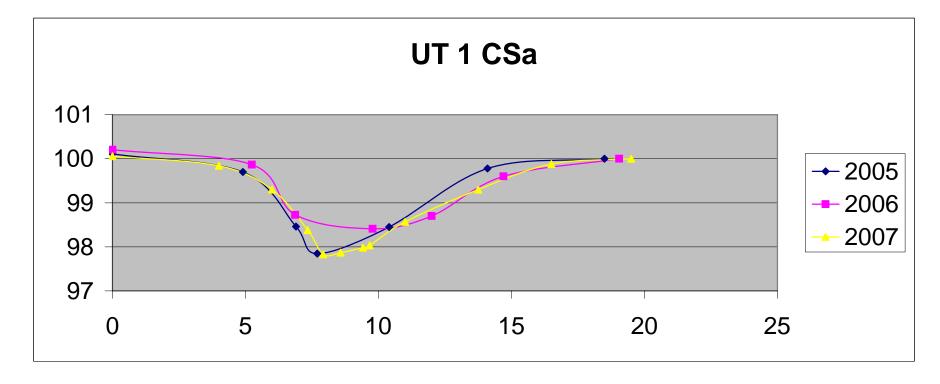
98.72695

Width

19.05

14.70

12.00


9.78

6.87

5.24

| Survey Data |           |          |  |  |  |  |
|-------------|-----------|----------|--|--|--|--|
| Station     | Elevation | Feature  |  |  |  |  |
| 0.0         | 100.06    | GS rebar |  |  |  |  |
| 4.0         | 99.84     |          |  |  |  |  |
| 6.0         | 99.30     |          |  |  |  |  |
| 7.3         | 98.38     |          |  |  |  |  |
| 7.9         | 97.83     | REW      |  |  |  |  |
| 8.6         | 97.87     | Thw      |  |  |  |  |
| 9.4         | 97.98     |          |  |  |  |  |
| 9.7         | 98.03     | LEW      |  |  |  |  |
| 11.0        | 98.57     |          |  |  |  |  |
| 13.8        | 99.30     |          |  |  |  |  |
| 16.5        | 99.80     |          |  |  |  |  |
| 19.5        | 100.00    | GS rebar |  |  |  |  |

| Summary Data Table                      | As-built<br>Mean | M1 2005 | M2 2006 | M3 2007 | M4 2008 | M5 2009 |
|-----------------------------------------|------------------|---------|---------|---------|---------|---------|
| Bankfull Cross Sectional Area           | 10.2             | 9.60    | 10.00   | 11.60   |         |         |
| Bankfull Width                          | 10.5             | 10.20   | 12.4    | 12.3    |         |         |
| Bankfull Mean Depth                     | 0.97             | 0.90    | 0.8     | 0.9     |         |         |
| Bankfull Max Depth                      | 1.9              | 1.90    | 1.5     | 2       |         |         |
| Width/Depth Ratio                       | 10.8             | 10.80   | 15.30   | 13.10   |         |         |
| Entrenchment Ratio                      | 16.7             | 17.20   | 14.20   | 14.20   |         |         |
| Average Width of Flood Prone Area = 175 |                  |         |         |         |         |         |



|           | 2005 Data |        |          |           |          |       |
|-----------|-----------|--------|----------|-----------|----------|-------|
| Station   | Backshot  | HI     | Foreshot | Elevation | Feature  | Width |
| 19.3      | 6.049     | 16.049 |          | 100.000   | LTB      | 13    |
| 14        |           |        | 8.702    | 97.347    |          | 7.7   |
| 13.3      |           |        | 8.905    |           | Thw      | 7     |
| 12.2      |           |        | 8.711    |           |          | 5.9   |
| 6.3       |           |        | 6.253    | 99.796    | RTB      | 0     |
| 0007 1-1- |           |        |          |           |          |       |
| 2007 data |           |        | F 0F     | 00.77     | 00       |       |
| 14.0      |           |        | 5.95     |           | GS rebar |       |
| 13.0      |           |        | 6.34     |           |          |       |
| 11.8      |           |        | 6.9      | 98.820    |          |       |
| 10.0      |           |        | 7.53     | 98.190    | DEW      |       |
| 8.1       |           |        | 7.87     |           |          |       |
| 7.1       |           |        | 8.55     | 97.17     |          |       |
| 6.3       |           |        | 8.44     | 97.28     | LEW      |       |
| 5.0       |           |        | 7.48     |           |          |       |
| 3.0       |           |        | 6.51     |           |          |       |
| 0.0       |           |        | 5.72     | 100       | GS rebar |       |
|           |           |        |          |           |          |       |
| 2005 W    | 2006 W    | 2007 W | 2005 E   | 2006 E    | 2007 E   |       |
| 13        | 13        | 14     | 100.000  | 100.000   | 99.77    |       |
| 8         | 8         | 13     | 97.347   | 97.554    | 99.380   |       |
| 7         | 6         | 12     | 97.144   | 97.023    | 98.820   |       |
| 6         | 5         | 10     | 97.338   | 97.453    | 98.190   |       |
| 0         | 0         | 8      | 99.796   | 99.782    | 97.85    |       |
|           |           | 7      |          |           | 97.17    |       |
|           |           | 6      |          |           | 97.28    |       |
|           |           | 5      |          |           | 98.24    |       |
|           |           | 3      |          |           | 99.21    |       |
|           |           | 0      |          |           | 100      |       |
|           |           |        |          |           |          |       |

2006 Data

Point

UT21

UT22

UT23

UT24

UT25

X Y

5005.954 5028.169 92.70472

5010.017 5024.868 90.25848

5010.599 5023.968 89.72807

5011.917 5023.111 90.15774

5015.968 5019.238 92.48625

Elevation Corrected E Feature Width

97.55376

97.45302

7.29528

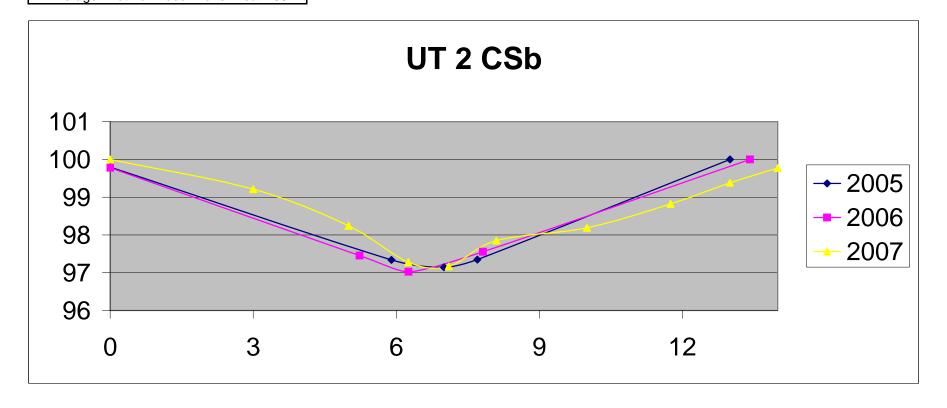
100 LTB

97.02335 Thw

99.78153 RTB

13.42

7.82


6.26

5.23

0.00

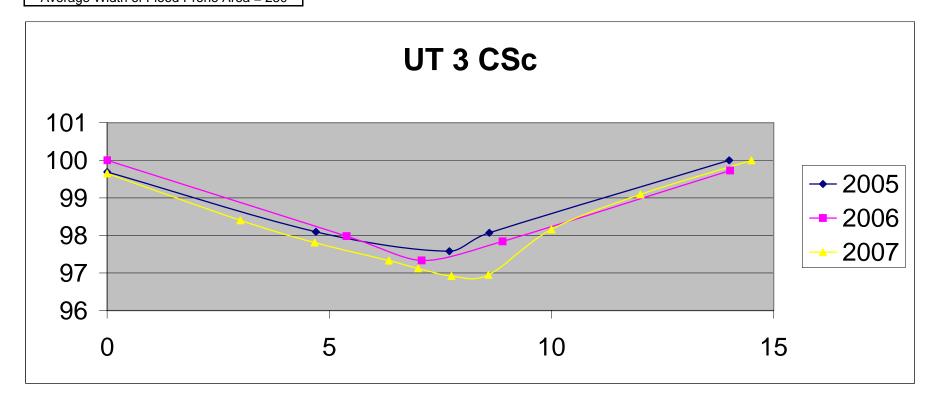
| Survey Data |           |          |  |  |  |  |  |  |  |  |
|-------------|-----------|----------|--|--|--|--|--|--|--|--|
| Station     | Elevation | Feature  |  |  |  |  |  |  |  |  |
| 0.0         | 100       | GS rebar |  |  |  |  |  |  |  |  |
| 3.0         | 99.21     | lbf      |  |  |  |  |  |  |  |  |
| 5.0         | 98.24     |          |  |  |  |  |  |  |  |  |
| 6.3         | 97.28     | LEW      |  |  |  |  |  |  |  |  |
| 7.1         | 97.17     | Thw      |  |  |  |  |  |  |  |  |
| 8.1         | 97.85     | REW      |  |  |  |  |  |  |  |  |
| 10.0        | 98.190    |          |  |  |  |  |  |  |  |  |
| 11.8        | 98.820    | rbf      |  |  |  |  |  |  |  |  |
| 13.0        | 99.380    |          |  |  |  |  |  |  |  |  |
| 14.0        | 99.77     | GS rebar |  |  |  |  |  |  |  |  |

|                                        | As-built |         |         |         |         |         |
|----------------------------------------|----------|---------|---------|---------|---------|---------|
| Summary Data Table                     | Mean     | M1 2005 | M2 2006 | M3 2007 | M4 2008 | M5 2009 |
| Bankfull Cross Sectional Area          | 21       | 20.40   | 21.10   | 19.30   |         |         |
| Bankfull Width                         | 13.7     | 13.00   | 13.40   | 14      |         |         |
| Bankfull Mean Depth                    | 1.5      | 1.60    | 1.6     | 1.4     |         |         |
| Bankfull Max Depth                     | 2.79     | 2.90    | 3       | 2.8     |         |         |
| Width/Depth Ratio                      | 9.1      | 8.30    | 8.50    | 10.10   |         |         |
| Entrenchment Ratio                     | 5.8      | 6.20    | 6.00    | 5.70    |         |         |
| Average Width of Flood Prone Area = 80 |          |         |         | _       |         | _       |



|           | 2005 Data |        |          |           |         |       | 2006  | Data     |          |           |                     |       |
|-----------|-----------|--------|----------|-----------|---------|-------|-------|----------|----------|-----------|---------------------|-------|
| Station   | Backshot  | HI     | Foreshot | Elevation | Feature | Width | Point | Χ        | Υ        | Elevation | Corrected E Feature | Width |
| 21.5      | 5.309     | 15.309 |          | 100 I     | LTB     | 14    | UT31  | 5006.153 | 5008.243 | 94.62318  | 100 LTB             | 0.0   |
| 16.1      |           |        | 7.24     | 98.069    |         | 8.6   | UT32  | 5002.446 | 5012.162 | 92.59927  | 97.97927            | 5.3   |
| 15.2      |           |        | 7.728    | 97.581 (  | Ctr     | 7.7   | UT33  | 5001.007 | 5013.114 | 91.95454  | 97.33454 Ctr        | 7.0   |
| 12.2      |           |        | 7.214    | 98.095    |         | 4.7   | UT34  | 4999.878 | 5014.563 | 92.45898  | 97.83898            | 8.8   |
| 7.5       |           |        | 5.62     | 99.689    | RTB     | 0     | UT35  | 4996.326 | 5018.239 | 94.34446  | 99.72446 RTB        | 14.0  |
| 2007 Data |           |        |          |           |         |       |       |          |          |           |                     |       |
| 14.5      |           |        | 3.89     | 100 (     | GS      |       |       |          |          |           | 5.38                |       |
| 12.0      |           |        | 4.8      | 99.09     |         |       |       |          |          |           |                     |       |
| 10.0      |           |        | 5.73     | 98.16     |         |       |       |          |          |           |                     |       |
| 8.6       |           |        | 6.94     | 96.95 I   | LEW     |       |       |          |          |           |                     |       |
| 7.8       |           |        | 6.97     | 96.92     | Thw     |       |       |          |          |           |                     |       |
| 7.0       |           |        | 6.77     | 97.12 l   | REW     |       |       |          |          |           |                     |       |
| 6.3       |           |        | 6.56     | 97.33     |         |       |       |          |          |           |                     |       |
| 4.7       |           |        | 6.08     | 97.81     |         |       |       |          |          |           |                     |       |
| 3.0       |           |        | 5.49     | 98.4      |         |       |       |          |          |           |                     |       |
| 0.0       |           |        | 4.24     | 99.65     | GS      |       |       |          |          |           |                     |       |
|           |           |        |          |           |         |       |       |          |          |           |                     |       |
| 2005 W    | 2006 W 20 | 007 W  | 2005 E   | 2006 E    | 2007 E  |       |       |          |          |           |                     |       |
| 14        | 0         | 15     | 100      | 100.00    | 100     |       |       |          |          |           |                     |       |
| 9         | 5         | 12     | 98.069   | 97.98     | 99.09   |       |       |          |          |           |                     |       |
| 8         | 7         | 10     | 97.581   | 97.33     | 98.16   |       |       |          |          |           |                     |       |
| 5         | 9         | 9      | 98.095   | 97.84     | 96.95   |       |       |          |          |           |                     |       |
| 0         | 14        | 8      | 99.689   | 99.72     | 96.92   |       |       |          |          |           |                     |       |
|           |           | 7      |          |           | 97.12   |       |       |          |          |           |                     |       |
|           |           | 6      |          |           | 97.33   |       |       |          |          |           |                     |       |
|           |           | 5      |          |           | 97.81   |       |       |          |          |           |                     |       |
|           |           | 3      |          |           | 98.4    |       |       |          |          |           |                     |       |
|           |           | 0.0    |          |           | 99.65   |       |       |          |          |           |                     |       |
|           |           |        |          |           |         |       |       |          |          |           |                     |       |

0.00


5.39

7.08 8.90

14.02

| Survey Data |           |         |  |  |  |  |  |  |  |  |
|-------------|-----------|---------|--|--|--|--|--|--|--|--|
| Station     | Elevation | Feature |  |  |  |  |  |  |  |  |
| 0.0         | 99.65     | GS      |  |  |  |  |  |  |  |  |
| 3.0         | 98.4      | rbf     |  |  |  |  |  |  |  |  |
| 4.7         | 97.81     |         |  |  |  |  |  |  |  |  |
| 6.3         | 97.33     |         |  |  |  |  |  |  |  |  |
| 7.0         | 97.12     | REW     |  |  |  |  |  |  |  |  |
| 7.8         | 96.92     |         |  |  |  |  |  |  |  |  |
| 8.6         | 96.95     | LEW     |  |  |  |  |  |  |  |  |
| 10.0        | 98.16     | lbf     |  |  |  |  |  |  |  |  |
| 12.0        | 99.09     |         |  |  |  |  |  |  |  |  |
| 14.5        | 100       | GS      |  |  |  |  |  |  |  |  |

|                                         | As-built |         |         |         |         |         |
|-----------------------------------------|----------|---------|---------|---------|---------|---------|
| Summary Data Table                      | Mean     | M1 2005 | M2 2006 | M3 2007 | M4 2008 | M5 2009 |
| Bankfull Cross Sectional Area           | 18.3     | 18.90   | 20.00   | 24.10   |         |         |
| Bankfull Width                          | 13.9     | 14.00   | 14.00   | 14.50   |         |         |
| Bankfull Mean Depth                     | 1.3      | 1.30    | 1.4     | 1.7     |         |         |
| Bankfull Max Depth                      | 2.68     | 2.40    | 2.7     | 3.1     |         |         |
| Width/Depth Ratio                       | 10.7     | 10.40   | 9.80    | 8.70    |         |         |
| Entrenchment Ratio                      | 18       | 17.90   | 17.80   | 17.20   |         |         |
| Average Width of Flood Prone Area = 250 |          |         |         |         |         |         |



| 2005 Data  |           |        |           |           |        |       | 2006 Data |          |          |          |               |         |       |
|------------|-----------|--------|-----------|-----------|--------|-------|-----------|----------|----------|----------|---------------|---------|-------|
| Station    | Backshot  | HI     | Foreshot  | Elevation |        | Width | Point     | X        |          |          | Corrected E F | Feature | Width |
| 20.2       | 6.155     | 16.155 |           | 100       | RTB    | 14.7  | UT41      | 5013.03  | 5000     | 94.21376 | 100.20797     |         | 14.64 |
| 17.7       |           |        | 6.712     | 99.443    |        | 12.2  | UT42      | 5013.641 | 4997.613 | 93.47387 | 99.46808 L    | LBF     | 11.27 |
| 14.8       |           |        | 8.439     | 97.716    |        | 9.3   | UT43      | 5014.151 | 4994.33  | 91.84492 | 97.83913 L    | LEW     | 9.14  |
| 13.3       |           |        | 8.612     | 97.543    | Ctr    | 7.8   | UT44      | 5013.381 | 4992.556 | 91.59618 | 97.59039      | Thw     | 7.45  |
| 11.1       |           |        | 8.47      | 97.685    |        | 5.6   | UT45      | 5013.215 | 4990.863 | 91.88739 | 97.8816 F     | REW     | 5.71  |
| 7.7        |           |        | 6.554     | 99.601    |        | 2.2   | UT46      | 5013.237 | 4988.729 | 93.25119 | 99.2454 F     | RBF     | 2.41  |
| 5.5        |           |        | 5.911     | 100.244   | LTB    | 0     | UT47      | 5013.495 | 4985.364 | 94.00579 | 100           |         | 0     |
|            |           |        |           |           |        |       |           |          |          |          |               |         |       |
| 2007 Data  |           |        |           |           |        |       |           |          |          |          |               |         |       |
| 15.3       |           |        | 4.34      |           |        |       |           |          |          |          | 5.99421       |         |       |
| 12.0       |           |        | 5.61      | 98.97     |        |       |           |          |          |          |               |         |       |
| 10.0       |           |        | 6.54      |           |        |       |           |          |          |          |               |         |       |
| 9.0        |           |        | 6.84      |           |        |       |           |          |          |          |               |         |       |
| 7.5        |           |        | 7.01      | 97.57     |        |       |           |          |          |          |               |         |       |
| 6.0        |           |        | 6.93      | 97.65     | REW    |       |           |          |          |          |               |         |       |
| 4.4        |           |        | 5.7       | 98.88     | Rbf    |       |           |          |          |          |               |         |       |
| 2.3        |           |        | 4.8       | 99.78     |        |       |           |          |          |          |               |         |       |
| 0.0        |           |        | 4.58      | 100       |        |       |           |          |          |          |               |         |       |
|            |           |        |           |           |        |       |           |          |          |          |               |         |       |
|            |           |        |           |           |        |       |           |          |          |          |               |         |       |
|            |           |        |           |           |        |       |           |          |          |          |               |         |       |
|            |           |        |           |           |        |       |           |          |          |          |               |         |       |
| 2005 Width | 2006 W 20 | 07 W   | 2005 Elev | 2006 Elev | 2007 E |       |           |          |          |          |               |         |       |

15 11

9 7 6

2

15 12

10

4 2 0 100

99.443

97.716

97.543

97.685

99.601

100.244

100.21

99.47

97.84

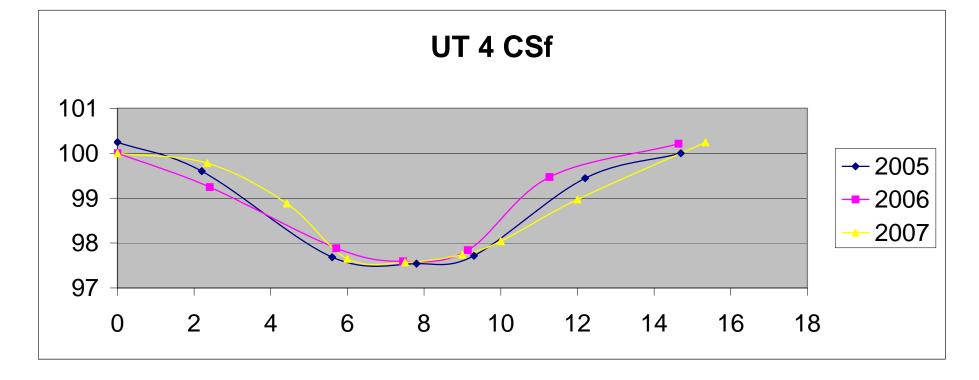
97.59

97.88

99.25

100.00

100.24 98.97


98.04

97.74 97.57 97.65

98.88 99.78 100

| Survey Data |           |         |  |  |  |  |  |  |  |  |
|-------------|-----------|---------|--|--|--|--|--|--|--|--|
| Station     | Elevation | Feature |  |  |  |  |  |  |  |  |
| 0.0         | 100       |         |  |  |  |  |  |  |  |  |
| 2.3         | 99.78     |         |  |  |  |  |  |  |  |  |
| 4.4         | 98.88     | rbf     |  |  |  |  |  |  |  |  |
| 6.0         | 97.65     | REW     |  |  |  |  |  |  |  |  |
| 7.5         | 97.57     | Thw     |  |  |  |  |  |  |  |  |
| 9.0         | 97.74     | LEW     |  |  |  |  |  |  |  |  |
| 10.0        | 98.04     |         |  |  |  |  |  |  |  |  |
| 12.0        | 98.97     | lbf     |  |  |  |  |  |  |  |  |
| 15.3        | 100.24    |         |  |  |  |  |  |  |  |  |

|                                         | As-built |         |         |         |         |         |
|-----------------------------------------|----------|---------|---------|---------|---------|---------|
| Summary Data Table                      | Mean     | M1 2005 | M2 2006 | M3 2007 | M4 2008 | M5 2009 |
| Bankfull Cross Sectional Area           | 19.4     | 22.00   | 20.00   | 21.60   |         |         |
| Bankfull Width                          | 13.2     | 14.70   | 14.6    | 15.3    |         |         |
| Bankfull Mean Depth                     | 1.47     | 1.50    | 1.4     | 1.4     |         |         |
| Bankfull Max Depth                      | 2.37     | 2.70    | 2.6     | 2.7     |         |         |
| Width/Depth Ratio                       | 8.98     | 9.80    | 10.70   | 10.80   |         |         |
| Entrenchment Ratio                      | 8.71     | 7.80    | 7.90    | 7.50    |         |         |
| Average Width of Flood Prone Area = 115 |          | •       |         |         |         | _       |



## **APPENDIX** C. Bank Full Events

Photo Log

## Bank Full Event February 15<sup>th</sup>, 2007



















### **APPENDIX** D. Profile Raw Data

Data Tables Pebble Count Graphs **Visual Morphological Stability Assessment** 

Project: Pott Creek

Reach: Pott Creek (1000 lf)

Feature Category

Riffle 1 Present? Yes - constructed

Stable? Yes - minor migration

Minimal evidence of embedding/fining? Yes Length Appropriate Yes

Riffle 2 Present? Natural riffle forming on it's own

Stable? N/A
Minimal evidence of embedding/fining? N/A
Length Appropriate Yes

Riffle 3 Present? Natural riffle forming on it's own

Stable? N/A
Minimal evidence of embedding/fining? N/A
Length Appropriate Yes

Riffle 4 Present? Yes - constructed

No - Beaver took advantage of this problem area; pool formed below beaver dam, remains of riffle have

Stable? deposited about 30 feet downstream

Minimal evidence of embedding/fining? Yes Length Appropriate No

Riffle 5 Present? Natural riffle forming on it's own

Stable? N/A
Minimal evidence of embedding/fining? N/A
Length Appropriate Yes

Riffle 6 Present? Natural riffle forming on it's own

Stable? N/A
Minimal evidence of embedding/fining? N/A
Length Appropriate Yes

Riffle 7 Present? Natural riffle forming on it's own

Stable? N/A
Minimal evidence of embedding/fining? N/A
Length Appropriate Yes

**Visual Morphological Stability Assessment** 

Project: Pott Creek

Reach: Rhodes Mill (500 lf)

Feature Category

Riffle 1 Present? Yes - constructed

Stable? Yes Minimal evidence of embedding/fining? Yes Length Appropriate Yes

Riffle 2 Present? Yes - constructed

Yes - most substrate seems to be on left bank, water is

Stable? severly down

Minimal evidence of embedding/fining? Yes Length Appropriate Yes

Yes - appears to be a constructed riffle between two log

Riffle 3 Present? sills, all sand but functiong as a riffle

Stable? Yes

Peeble Count actually done on what is now being called

Minimal evidence of embedding/fining? Riffle 4

Riffle 4 Present? Yes
Stable? Yes
Minimal evidence of embedding/fining? Yes

Length Appropriate Yes

This appears to be a riffle made up of substrate washed

Riffle 5 Present? out of the upstream riffles

Stable? Yes

Subsrtate measured out larger this year, smaller

Minimal evidence of embedding/fining? substrate seems to be washing out of the reach

Length Appropriate Yes

#### **Visual Morphological Stability Assessment**

Project: Pott Creek Reach: UT 1 (600 lf)

Feature Category

Riffles Present? 12 counted, substrate still sand

Stable? Yes >99%

Minimal evidence of embedding/fining? N/A Length Appropriate YES

#### **Visual Morphological Stability Assessment**

Project: Pott Creek Reach: UT 2 (350 lf)

Feature Category

Not really, depths were measured in order to count and

Riffles Present? measure pools - no other features noted

Stable? YES
Minimal evidence of embedding/fining? N/A
Length Appropriate N/A

#### **Visual Morphological Stability Assessment**

Project: Pott Creek

Reach: UT 3 (480 lf) Same as UT2

#### **Visual Morphological Stability Assessment**

Project: Pott Creek

Reach: UT 4 (350 lf) Same as UT2

#### **Visual Morphological Stability Assessment**

Project: Pott Creek

Reach: UT 5 (40 lf) Same as UT2

Table X. Categorical Stream Feature Visual Stability Assessment

| Reach:  | Pott Creek (1000 lf) |
|---------|----------------------|
| Feature | MY 2007              |
| Riffles | 100                  |
| Pools   | 57                   |
| Thalweg | 75                   |
| Vanes   | 100                  |

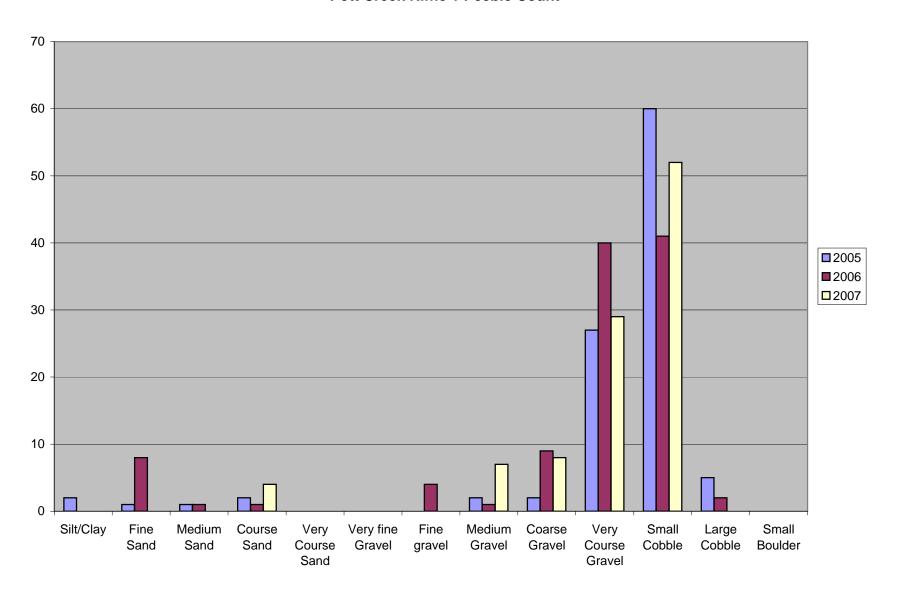
| Reach:  | UT 1 (600 lf) |
|---------|---------------|
| Feature | MY 2007       |
| Riffles | 100           |
| Pools   | 100           |
| Thalweg | 95            |
| Vanes   | 100           |

| Reach:  | UT 3 (480 lf) |     |
|---------|---------------|-----|
| Feature | MY 2007       |     |
| Riffles |               | n/a |
| Pools   |               | 100 |
| Thalweg |               | 100 |
| Vanes   |               | 100 |

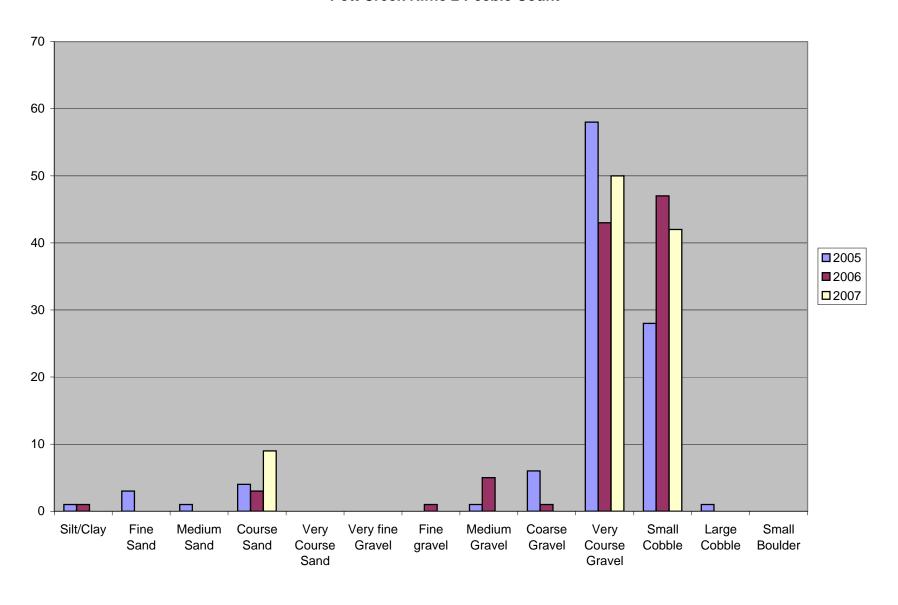
| Reach:  | Rhodes Mill (500 lf) |
|---------|----------------------|
| Feature | MY 2007              |
| Riffles | 67                   |
| Pools   | 75                   |
| Thalweg | 87.5                 |
| Vanes   | 100                  |

| Reach:  | UT 2 (350 lf) |     |
|---------|---------------|-----|
| Feature | MY 2007       |     |
| Riffles |               | n/a |
| Pools   |               | 100 |
| Thalweg |               | 100 |
| Vanes   |               | n/a |

| Reach:  | UT 4 (350 lf) |     |
|---------|---------------|-----|
| Feature | MY 2007       |     |
| Riffles |               | n/a |
| Pools   |               | 100 |
| Thalweg |               | 100 |
| Vanes   |               | n/a |


#### Pott Creek

| Feature   | Lenath (ft) | Depth (in) | Comments                                                                            |
|-----------|-------------|------------|-------------------------------------------------------------------------------------|
| Pool 1    | 31.43       |            |                                                                                     |
| Glide     | 95.80       |            | Thalwag right of center                                                             |
|           |             |            | Constructed riffle - Sand bar with vegetation in riffle; some migration below       |
| Riffle 1  | 37.99       |            | bottom log sill - Pebble Count                                                      |
| Run       | 21.75       |            | Thalwag centered                                                                    |
| Pool 2    | 14.96       | 10.20      | •                                                                                   |
| Glide     | 204.36      |            | Thalwag centered through most of this long featureless section                      |
| Deep      |             |            |                                                                                     |
| section   |             |            |                                                                                     |
| near      |             |            |                                                                                     |
| structure | 14.93       | 12.00      | Pool 2a                                                                             |
| Glide 2a  | 19.13       |            | thalwag centered                                                                    |
| Riffle 2  | 81.69       |            | naturally forming sand riffle                                                       |
| Run       | 0.00        |            |                                                                                     |
| Pool 3    | 26.54       | 8.5, 12    |                                                                                     |
| Glide     | 66.86       |            | Thalwag centered                                                                    |
| Riffle 3  | 10.47       |            | naturally forming sand riffle                                                       |
| Run       | 0.00        |            |                                                                                     |
| Pool 4    | 23.72       | 9.75       |                                                                                     |
| Glide     | 49.74       |            | Thalwag centered                                                                    |
|           |             |            | formerly Riffle 4, beaverdam dismantled above first log sill of constructed riffle; |
|           | 31.33       | 15.50      | "pool" has formed between the 2 log sills                                           |
| Riffle 4  | 9.45        |            | Peeble Count, remains of stone from constructed riffle have gathered here           |
| Run       | 13.75       |            | thalwag centered                                                                    |
| Pool 5    | 8.30        | 11.00      |                                                                                     |
| Glide     | 55.87       |            | Thalwag left of center                                                              |
| Riffle 5  | 0.00        |            |                                                                                     |
| Run       | 0.00        |            |                                                                                     |
| Pool 6    | 19.16       | 10.50      |                                                                                     |
| Glide     | 48.26       |            | thalwag centered                                                                    |
| Riffle 6  | 34.65       |            | naturally forming sand riffle                                                       |
| Run       | 20.44       |            | thalwag right of center                                                             |
| Pool 7    | 39.27       | 10.98      |                                                                                     |
| Glide     | 65.09       |            | Thalwag centered                                                                    |
| Riffle 7  | 11.88       |            | naturally forming sand riffle                                                       |
| Run       | 26.15       |            | Thalwag centered                                                                    |
|           | 1082.97     |            |                                                                                     |


|          |           |           | Max   |
|----------|-----------|-----------|-------|
|          | Avg. Pool | Avg. Pool | Pool  |
| _        | to Pool   | Length    | Depth |
| Proposed | 172       | 101.3     | n/a   |
| MY1 2005 | 95.86     | 69.64     | n/a   |
|          |           |           |       |
| MY2 2006 | 99.42     | 40.95     | n/a   |
| MY3 2007 | 136.06    | 23.34     | 12    |
| MY4 2008 |           |           |       |
| MY5 2009 |           |           |       |

| Pott Creek         | Riffle 1 |      |      | Riffle 2 |      |      |
|--------------------|----------|------|------|----------|------|------|
|                    | 2005     | 2006 | 2007 | 2005     | 2006 | 2007 |
| Silt/Clay          | 2        |      |      | 1        | 1    |      |
| Fine Sand          | 1        | 8    |      | 3        |      |      |
| Medium Sand        | 1        | 1    |      | 1        |      |      |
| Course Sand        | 2        | 1    | 4    | 4        | 3    | 9    |
| Very Course Sand   |          |      |      |          |      |      |
| Very fine Gravel   |          |      |      |          |      |      |
| Fine gravel        |          | 4    |      |          | 1    |      |
| Medium Gravel      | 2        | 1    | 7    | 1        | 5    |      |
| Coarse Gravel      | 2        | 9    | 8    | 6        | 1    |      |
| Very Course Gravel | 27       | 40   | 29   | 58       | 43   | 50   |
| Small Cobble       | 60       | 41   | 52   | 28       | 47   | 42   |
| Large Cobble       | 5        | 2    |      | 1        |      |      |
| Small Boulder      |          |      | _    |          |      |      |
|                    | 102      | 107  | 100  | 103      | 101  | 101  |

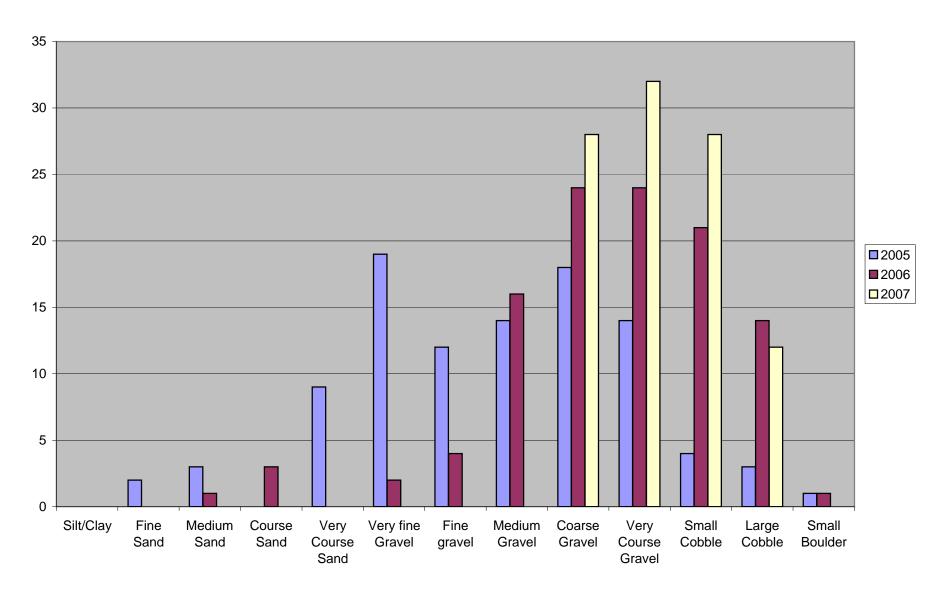
#### **Pott Creek Riffle 1 Peeble Count**



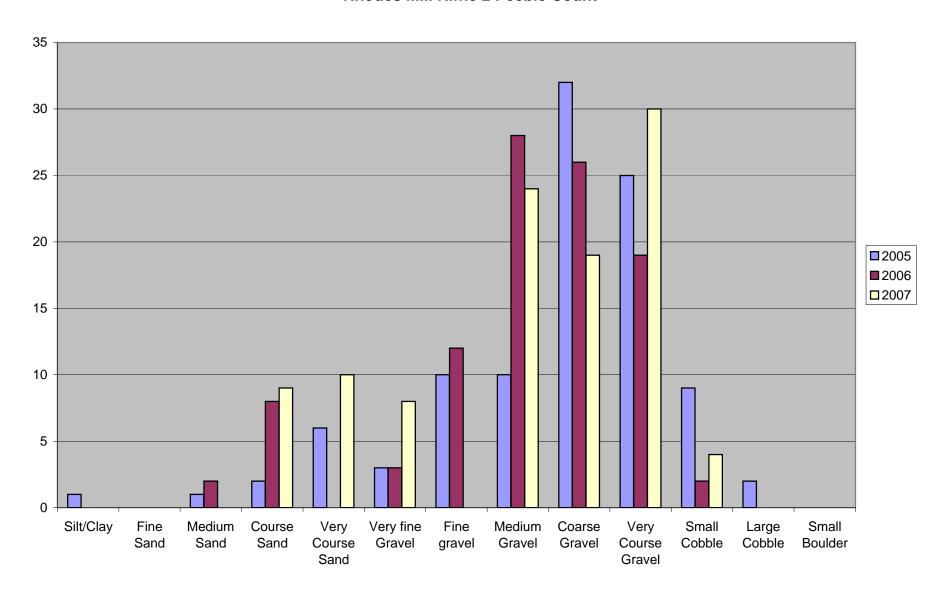
#### **Pott Creek Riffle 2 Peeble Count**



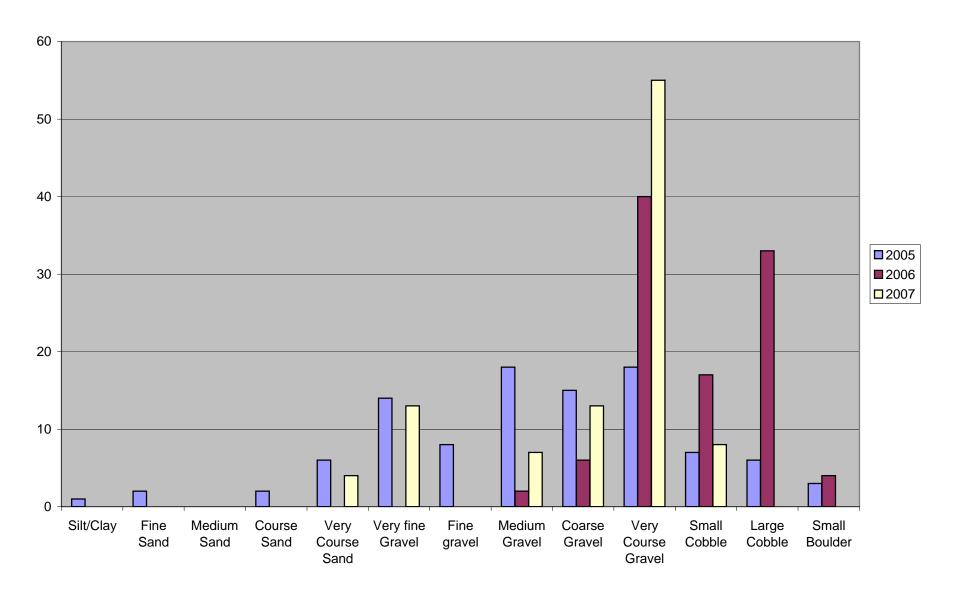
#### Rhodes Mill


| Feature  | Length (Ft) | Depth (in) | Comments                                                                      |
|----------|-------------|------------|-------------------------------------------------------------------------------|
| Pool 1   | 50.14       | 16.50      |                                                                               |
| Glide    | 23.79       |            | Thalwag centered                                                              |
| Riffle 1 | 28.87       |            | vegetated island closer to right bank, Pebble Count                           |
| Run      | 6.63        |            | Thalwag centered                                                              |
| Pool 2   | 11.38       | 14.20      |                                                                               |
| Glide    | 73.46       |            | Thalwag centered                                                              |
|          |             |            | riffle in same shape as previous years observations, migrated below log sill, |
| Riffle 2 | 34.09       |            | substrate is mostly on sand bar on left bank, Pebble Count                    |
| Pool 3   | 23.13       | 9.50       |                                                                               |
| Glide    | 35.04       |            | Thalwag centered                                                              |
|          |             |            | Constructed riffle is completey out side both sills, substrate has migrated   |
| Formerly |             |            | downstream, took Pebble Count downstream where subtrate is currently          |
| Riffle 3 | 8.96        |            | (Riffle 4)                                                                    |
|          |             |            | water goes around bottom log sill, bad spot in right bank, creates deep pool  |
| Pool 4   | 3.38        | 11.60      | area                                                                          |
| Glide    | 19.91       |            | Thalwag centered                                                              |
| Riffle 4 | 17.61       |            | Peeble Count                                                                  |
| Run      | 3.97        |            | Thalwag centered                                                              |
| Pool 5   | 10.14       | 16.25      |                                                                               |
| Glide    | 26.18       |            | Thalwag slightly left of center                                               |
|          |             |            |                                                                               |
| Riffle 5 | 20.47       |            | Peeble Count                                                                  |

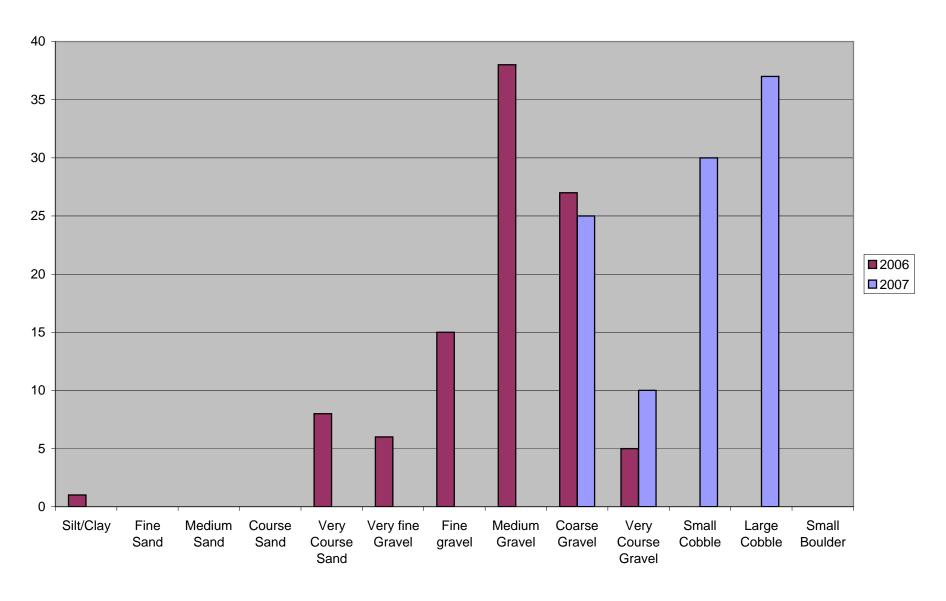
|          | Avg. Pool to        | Avg. Pool | Max Pool |  |  |
|----------|---------------------|-----------|----------|--|--|
|          | <b>Pool Spacing</b> | Length    | Depth    |  |  |
| Proposed | 108.6               | 70.2      | n/a      |  |  |
| MY1 2005 | 109.55              | 19.08     | n/a      |  |  |
| MY2 2006 | 93.81               | 24.90     | n/a      |  |  |
| MY3 2007 | 63.08               | 19.63     | 16.5     |  |  |
| MY4 2008 |                     |           |          |  |  |
| MY5 2009 |                     |           |          |  |  |


397.15

| Rhodes Mill        | Riffle 1 | Riffle 2 |      |      |      | Riffle 3 |      |      | Riffle 5 |      |      |
|--------------------|----------|----------|------|------|------|----------|------|------|----------|------|------|
|                    | 2005     | 2006     | 2007 | 2005 | 2006 | 2007     | 2005 | 2006 | 2007     | 2006 | 2007 |
| Silt/Clay          |          |          |      | 1    |      |          | 1    |      |          | 1    |      |
| Fine Sand          | 2        |          |      |      |      |          | 2    |      |          |      |      |
| Medium Sand        | 3        | 1        |      | 1    | 2    |          |      |      |          |      |      |
| Course Sand        |          | 3        |      | 2    | 8    | 9        | 2    |      |          |      |      |
| Very Course Sand   | 9        |          |      | 6    |      | 10       | 6    |      | 4        | 8    |      |
| Very fine Gravel   | 19       | 2        |      | 3    | 3    | 8        | 14   |      | 13       | 6    |      |
| Fine gravel        | 12       | 4        |      | 10   | 12   |          | 8    |      |          | 15   |      |
| Medium Gravel      | 14       | 16       |      | 10   | 28   | 24       | 18   | 2    | 7        | 38   |      |
| Coarse Gravel      | 18       | 24       | 28   | 32   | 26   | 19       | 15   | 6    | 13       | 27   | 25   |
| Very Course Gravel | 14       | 24       | 32   | 25   | 19   | 30       | 18   | 40   | 55       | 5    | 10   |
| Small Cobble       | 4        | 21       | 28   | 9    | 2    | 4        | 7    | 17   | 8        |      | 30   |
| Large Cobble       | 3        | 14       | 12   | 2    |      |          | 6    | 33   |          |      | 37   |
| Small Boulder      | 1        | 1        |      |      |      |          | 3    | 4    |          |      |      |
| _                  | 99       | 110      | 100  | 101  | 100  | 104      | 100  | 102  | 100      | 100  | 102  |


#### **Rhodes Mill Riffle 1 Peeble Count**




#### **Rhodes Mill Riffle 2 Peeble Count**



#### **Rhodes Mill Riffle 3/4 Peeble Count**



#### **Rhodes Mill Riffle 5 Peeble Count**



| Feature   | Length ft |       | Comments                              |
|-----------|-----------|-------|---------------------------------------|
| Riffle 1  | 3.58      | 0.229 |                                       |
| Run       | 5.75      | 0.292 |                                       |
| Pool 1    | 4.33      | 0.406 |                                       |
| Glide     | 3.33      | 0.328 |                                       |
| Riffle 2  | 44        | 0.156 |                                       |
| Run       | 11.58     | 0.188 | Pool to Pool Spacing: 58.91           |
| Pool 2    | 4.17      | 0.784 |                                       |
| Glide     | 22.17     | 0.177 |                                       |
| Riffle 3  | 15.42     | 0.167 |                                       |
| Run       | 1.75      | 0.245 | Pool to Pool Spacing: 39.34           |
| Pool 3    | 2.58      | 0.656 |                                       |
| Glide     | 20.67     | 0.188 |                                       |
| Riffle 4  | 10.33     |       |                                       |
| Run       | 2.33      | 0.135 | Pool to Pool Spacing: 72.62           |
| Pool 4    | 3         | 0.708 |                                       |
| Glide     | 17.92     | 0.201 |                                       |
| Riffle 5  | 5.83      | 0.167 |                                       |
| Run       | 1.42      | 0.24  | Pool to Pool Spacing: 25.17           |
| Pool 5    | 10.75     | 0.495 |                                       |
| Glide     | 8.17      | 0.156 |                                       |
| Riffle 6  | 16.75     | 0.125 |                                       |
| Run       | 1.75      | 0.229 | Pool to Pool Spacing: 26.67           |
| Pool 6    | 2.33      | 0.74  | Structure??                           |
| Glide     | 41.66     | 0.292 |                                       |
| Riffle 7  | 4.25      | 0.201 |                                       |
| Run       | 1.5       | 0.24  | Pool to Pool Spacing: 47.41           |
| Pool 7    | 1.75      | 0.854 |                                       |
| Glide     | 8.33      | 0.167 |                                       |
| Riffle 8  | 7.67      | 0.125 |                                       |
| Run       | 2.75      | 0.177 | Pool to Pool Spacing: 18.75           |
| Pool 8    | 2.33      | 0.495 |                                       |
| Glide     | 9.66      | 0.188 |                                       |
| Riffle 9  | 5         | 0.177 |                                       |
| Run       | 1.5       | 0.188 | Pool to Pool Spacing: 16.16           |
| Pool 9    | 1.42      | 0.573 |                                       |
| Glide     | 169.49    | 0.238 | long section of non-descript bed form |
| Riffle 10 | 9         | 0.245 |                                       |
| Run       | 7.83      | 0.156 | Pool to Pool Spacing: 186.32          |
| Pool 10   | 2.25      | 0.833 |                                       |
| Glide     | 32.09     | 0.208 |                                       |
| Riffle 11 | 5         | 0.161 |                                       |
| Run       | 1.83      | 0.24  | Pool to Pool Spacing: 38.92           |

UT1

|          | Avg. Pool to Pool Spacing | Avg. Pool Length | Max Pool Depth |
|----------|---------------------------|------------------|----------------|
| Proposed | 48.2                      | 28.8             | 2.6*           |
| MY1 2005 | 34.9                      | 16.75            | n/a            |
| MY2 2006 | n/a                       | n/a              | n/a            |
| MY3 2007 | 57.7                      | 3.51             | 0.854          |
| MY4 2008 |                           |                  |                |
| MY5 2009 |                           |                  |                |

\*from bankfull

General Comments: Pools seem to be shortening up, mostly associated with rock and log structures, however the bed form diversity is excellent and the r-r-p-g sequence is good except for one unusually long "Glide".

| Pool 11   | 5.25  | 0.458 |                              |
|-----------|-------|-------|------------------------------|
| Glide     | 80.24 | 0.236 |                              |
| Riffle 12 | 21.08 | 0.375 |                              |
| Run       | 3.33  | 0.201 | Pool to Pool Spacing: 104.65 |
| Pool 12   | 2     | 0.75  |                              |
| Glide     | 6     | 0.167 |                              |

653.12

| Feature      | Length ft | Depth ft | Comments                      |
|--------------|-----------|----------|-------------------------------|
|              | 0         | 0.11     |                               |
|              | 33.55     | 0.13     |                               |
| Head of Pool | 12.86     | 0.23     |                               |
| Foot of Pool | 26.67     | 0.17     | Length of pool: 39.53         |
|              | 12.12     | 0.13     |                               |
|              | 21.12     | 0.15     |                               |
|              | 25.98     | 0.17     |                               |
|              | 12.04     | 0.25     |                               |
|              | 2.16      | 0.17     | Pool spacing: 73.42; Cattails |
| Head of Pool | 17.09     | 0.42     |                               |
|              | 20.70     | 0.42     |                               |
| Foot of Pool | 27.75     | 0.32     | Length of pool: 65.54         |
|              | 13.91     | 0.23     |                               |
|              | 25.62     | 0.16     |                               |
|              | 16.04     | 0.26     |                               |
|              | 11.51     | 0.21     |                               |
|              | 23.52     | 0.33     | Pool spacing: 90.6            |
| Head of Pool | 26.50     | 0.21     |                               |
| Foot of Pool | 26.04     |          | Length of pool: 52.54         |

|          | Avg. Pool to Pool Spacing | Avg. Pool<br>Length | Max Pool<br>Depth |
|----------|---------------------------|---------------------|-------------------|
| Proposed | 24.6                      | 14.9                | n/a               |
| MY1 2005 | 38.16                     | 20.43               | n/a               |
| MY2 2006 | 23.19                     | 25.77               | n/a               |
| MY3 2007 | 82.01                     | 52.54               | 0.42              |
| MY4 2008 |                           |                     |                   |
| MY5 2009 |                           |                     |                   |
| -        |                           |                     |                   |

355.17

|         |           |          |                                       | 1 |
|---------|-----------|----------|---------------------------------------|---|
|         |           |          |                                       |   |
| Feature | Length ft | Depth ft | Comments                              |   |
| Pool 1  | 0.00      | 0.367    |                                       |   |
|         | 17.97     | 0.083    |                                       |   |
|         | 53.82     | 0.250    | Cattails                              |   |
|         | 13.45     | 0.250    | Pool Spacing: 67.27, very soft bottom |   |
|         | 28.70     | 0.383    |                                       |   |
| Pool 2  | 28.40     | 0.417    | Pool Length: 87.21, Cattails          | ] |
|         | 30.11     | 0.300    | Cattails                              |   |
|         | 22.57     | 0.308    | Pool Spacing: 22.57, cattails         |   |
| Pool 3  | 27.32     | 0.433    | Pool Length: 71.53                    |   |
|         | 15.97     | 0.383    |                                       |   |
|         | 28.24     | 0.283    | Cattails                              |   |
|         | 14.27     | 0.308    | Pool Spacing: 14.27, cattails         |   |
|         | 20.73     | 0.417    |                                       |   |
|         | 17.32     | 0.417    |                                       |   |
| Pool 4  | 11.51     | 0.450    | Pool Length: 67.24                    |   |
|         | 17.68     | 0.450    |                                       |   |
|         | 10.79     | 0.267    | Pool Spacing: 10.79                   |   |
| Pool 5  | 20.66     | 0.717    | Pool Length: 55.95                    | ] |
|         | 23.58     | 0.500    |                                       | 1 |
|         | 11.71     | 0.283    |                                       | 1 |
|         | 17.71     | 0.225    |                                       | 1 |
|         | 25.49     | 0.367    |                                       | 1 |
|         | 16.06     |          |                                       | 1 |

|          | Avg. Pool to Pool | Avg.<br>Pool | Max Pool |
|----------|-------------------|--------------|----------|
| _        | Spacing           | Length       | Depth    |
| Proposed | 37.1              | 23.3         | n/a      |
| MY1 2005 | 25.5              | 21.12        | n/a      |
| MY2 2006 | n/a               | n/a          | n/a      |
| MY3 2007 | 28.7              | 70.48        | 0.717    |
| MY4 2008 |                   |              |          |
| MY5 2009 |                   | ·            |          |

474.07

| Feature |        |       | Comments            |
|---------|--------|-------|---------------------|
|         | 0.00   |       |                     |
|         | 15.91  |       |                     |
|         | 10.92  |       |                     |
|         | 8.19   |       |                     |
|         | 17.84  |       |                     |
| Pool 1  | 8.40   |       | Pool Length: 9.98   |
|         | 11.58  |       |                     |
|         | 17.35  | 0.217 |                     |
|         | 9.87   | 0.283 |                     |
|         | 15.78  |       |                     |
|         | 8.63   |       |                     |
|         | 28.31  | 0.283 | Pool Spacing: 79.94 |
| Pool 2  | 8.33   | 0.383 | Pool Length: 22.57  |
|         | 14.24  | 0.217 |                     |
|         | 23.75  | 0.208 |                     |
|         | 8.13   | 0.267 |                     |
|         | 9.58   |       |                     |
|         | 10.10  | 0.300 | Pool Spacing: 51.56 |
| Pool 3  | 13.05  |       | Pool Length: 23.87  |
|         | 10.82  | 0.358 |                     |
|         | 18.40  | 0.333 |                     |
|         | 13.71  | 0.367 |                     |
|         | 9.25   | 0.275 | grass               |
|         | 7.71   |       | grass               |
|         | 13.55  | 0.292 |                     |
|         | 15.06  | 0.125 |                     |
|         | 14.56  | 0.133 |                     |
|         |        | 0.617 | in Pott Creek       |
|         | 343.02 |       |                     |

|          | Avg. Pool to |           |          |
|----------|--------------|-----------|----------|
|          | Pool         | Avg. Pool | Max Pool |
| _        | Spacing      | Length    | Depth    |
| Proposed |              | n/a       | n/a      |
| MY1 2005 | n/a          | n/a       | n/a      |
| MY2 2006 | n/a          | n/a       | n/a      |
| MY3 2007 | 65.75        | 18.81     | 0.442    |
| MY4 2008 |              |           |          |
| MY5 2009 |              |           |          |
|          |              |           |          |

Visual Morphological Stability Assessment
Project: Pott Creek

| Project:                               | Pott Creek                                      |                                         |                         |                   |          |
|----------------------------------------|-------------------------------------------------|-----------------------------------------|-------------------------|-------------------|----------|
| Reach:                                 | Pott Creek (1000 lf)                            |                                         |                         |                   |          |
| Feature Category                       |                                                 | (# Stable)<br>Performing as<br>Intended | Total # per<br>As-built | Total<br>unstable | % Stable |
| Riffles                                | Present?                                        | 2                                       | 2                       | N/A               |          |
|                                        | Armor Stable (no displacement)?                 | 2                                       | 2                       | 0                 | 100      |
|                                        | Facet Grade appears stable?                     | 2                                       | 2                       | 0                 | 100%     |
|                                        | Minimal evidence of embedding/fining?           | 2                                       | 2                       | N/A               |          |
|                                        | Length Appropriate?                             | N/A                                     | 2                       | N/A               | 100      |
| Pools                                  | Present(not subject to severe agrad.)?          | 4                                       | N/A                     | 3                 | 57       |
|                                        | Length Appropriate?                             | 4                                       | N/A                     | 3                 | 57       |
| Thalweg                                | Upstream of meander bend (run) centering?       | 3                                       | N/A                     | 1                 | 75       |
|                                        | Downstream of meander bend (glide) centering?   | 6                                       | N/A                     | 2                 | 75       |
| Bed General                            | General channel bed aggradation (bar formation) | 1                                       | N/A                     | N/A               |          |
|                                        | Channel bed degradation - down or head-cutting? |                                         | N/A                     | N/A               |          |
| Vanes                                  | Free of back or arm scour?                      | 24                                      | 24                      | 0                 | 100      |
| (Entire project) Since previous report | Free of structural failure?                     | 24                                      | 24                      | 0                 | 100      |
| ILEBOIL                                | II IEE OI SIIUCIUIAI IAIIUIE!                   | 24                                      |                         |                   | 100      |

**Visual Morphological Stability Assessment** 

Pott Creek

Project:

| Reach:           | Rhodes Mill (500 lf)                                                                    |                                         |                         |                   |           |
|------------------|-----------------------------------------------------------------------------------------|-----------------------------------------|-------------------------|-------------------|-----------|
| Feature Category |                                                                                         | (# Stable)<br>Performing as<br>Intended | Total # per<br>As-built | Total<br>unstable | % Stable  |
| Riffles          | Present?                                                                                | 2                                       | 3                       | N/A               | 67        |
|                  | Armor Stable (no displacement)?                                                         | 3                                       | 3                       | 0                 | 100       |
|                  | Facet Grade appears stable?                                                             | 3                                       | 3                       | 0                 | 100       |
|                  | Minimal evidence of embedding/fining? Length Appropriate?                               | 3                                       |                         | N/A<br>N/A        |           |
| Pools            | Present(not subject to severe agrad.)?                                                  | _                                       | N/A                     | 1                 | 75        |
|                  | Length Appropriate?                                                                     |                                         | N/A                     | 1                 | 75        |
| Thalweg          | Upstream of meander bend (run) centering? Downstream of meander bend (glide) centering? |                                         | N/A<br>N/A              | 0                 | 100<br>75 |
| Bed General      | General channel bed aggradation (bar formation) Channel bed degradation - down or       | 2                                       | N/A                     | N/A               |           |
|                  | head-cutting?                                                                           | 0                                       | N/A                     | N/A               |           |
| Vanes            | Free of back or arm scour?                                                              | 5                                       |                         | 0                 | 100       |
| (Entire project) | Free of structural failure?                                                             | 5                                       | 5                       | 0                 | 100       |

Visual Morphological Stability Assessment
Project: Pott Creek

| i iojeci.        | 1 Oll Olcck                                               |                                         |                         |                   |          |
|------------------|-----------------------------------------------------------|-----------------------------------------|-------------------------|-------------------|----------|
| Reach:           | UT 1 (600 lf)                                             |                                         |                         |                   |          |
| Feature Category |                                                           | (# Stable)<br>Performing as<br>Intended | Total # per<br>As-built | Total<br>unstable | % Stable |
| Riffles          | Present?                                                  | 12                                      | N/A                     | N/A               |          |
|                  | Armor Stable (no displacement)?                           | N/A                                     | N/A                     | N/A               |          |
|                  | Facet Grade appears stable?                               | N/A                                     | N/A                     | N/A               |          |
|                  | Minimal evidence of embedding/fining? Length Appropriate? | N/A<br>YES                              | N/A<br>N/A              | N/A<br>N/A        |          |
| Pools            | Present(not subject to severe agrad.)?                    | 12                                      | N/A                     | N/A               |          |
|                  | Length Appropriate?                                       | YES                                     | N/A                     | N/A               |          |
| Thalweg          | Upstream of meander bend (run) centering?                 | YES                                     | N/A                     | N/A               |          |
|                  | Downstream of meander bend (glide) centering?             | YES                                     | N/A                     | 1                 |          |
| Bed General      | General channel bed aggradation (bar formation)           | NONE                                    | N/A                     | N/A               |          |
|                  | Channel bed degradation - down or head-cutting?           | NONE                                    | N/A                     | N/A               |          |

100%

100%

Visual Morphological Stability Assessment
Project: Pott Creek

Free of back or arm scour?

Free of structural failure?

Vanes

(Entire project)

| i iojeci.        | 1 Oll Olcck                                                                   |                                         |                         |                   |          |
|------------------|-------------------------------------------------------------------------------|-----------------------------------------|-------------------------|-------------------|----------|
| Reach:           | UT 2 (350 lf)                                                                 |                                         |                         |                   |          |
| Feature Category |                                                                               | (# Stable)<br>Performing as<br>Intended | Total # per<br>As-built | Total<br>unstable | % Stable |
| Riffles          | Present?                                                                      | N/A                                     | N/A                     | N/A               |          |
|                  | Armor Stable (no displacement)?                                               | N/A                                     | N/A                     | N/A               |          |
|                  | Facet Grade appears stable?                                                   | N/A                                     | N/A                     | N/A               |          |
|                  | Minimal evidence of embedding/fining? Length Appropriate?                     | N/A<br>N/A                              | N/A<br>N/A              | N/A<br>N/A        |          |
| Pools            | Present(not subject to severe agrad.)?                                        | 3                                       | N/A                     | N/A               |          |
|                  | Length Appropriate?                                                           | NO                                      | N/A                     | N/A               |          |
| Thalweg          | Upstream of meander bend (run) centering?  Downstream of meander bend (glide) | YES                                     | N/A                     | N/A               |          |
|                  | centering?                                                                    | YES                                     | N/A                     | N/A               |          |
| Bed General      | General channel bed aggradation (bar formation)                               | NONE                                    | N/A                     | N/A               |          |
|                  | Channel bed degradation - down or head-cutting?                               | NONE                                    | N/A                     | N/A               |          |
| Vanes            | Free of back or arm scour?                                                    | N/A                                     | N/A                     | N/A               |          |
| (Entire project) | Free of structural failure?                                                   | N/A                                     | N/A                     | N/A               |          |

Visual Morphological Stability Assessment
Project: Pott Creek

| riojeci.         | FUIL CIECK                                                |                                         |                         |                   |          |
|------------------|-----------------------------------------------------------|-----------------------------------------|-------------------------|-------------------|----------|
| Reach:           | UT 3 (480 lf)                                             |                                         |                         |                   |          |
| Feature Category |                                                           | (# Stable)<br>Performing as<br>Intended | Total # per<br>As-built | Total<br>unstable | % Stable |
| Riffles          | Present?                                                  | N/A                                     | N/A                     | N/A               |          |
|                  | Armor Stable (no displacement)?                           | N/A                                     | N/A                     | N/A               |          |
|                  | Facet Grade appears stable?                               | N/A                                     | N/A                     | N/A               |          |
|                  | Minimal evidence of embedding/fining? Length Appropriate? | N/A<br>N/A                              | N/A<br>N/A              | N/A<br>N/A        |          |
| Pools            | Present(not subject to severe agrad.)?                    | 5                                       | N/A                     | N/A               |          |
|                  | Length Appropriate?                                       | NO                                      | N/A                     | N/A               |          |
| Thalweg          | Upstream of meander bend (run) centering?                 | YES                                     | N/A                     | N/A               |          |
|                  | Downstream of meander bend (glide) centering?             | YES                                     | N/A                     | N/A               |          |
| Bed General      | General channel bed aggradation (bar formation)           | NONE                                    | N/A                     | N/A               |          |
|                  | Channel bed degradation - down or head-cutting?           | NONE                                    | N/A                     | N/A               |          |
| Vanes            | Free of back or arm scour?                                |                                         | 1 1                     | (                 | 100%     |

100%

Visual Morphological Stability Assessment
Project: Pott Creek

Free of structural failure?

(Entire project)

| i iojeci.        | 1 off Orcer                                                                   |                                         |                         |                   |          |
|------------------|-------------------------------------------------------------------------------|-----------------------------------------|-------------------------|-------------------|----------|
| Reach:           | UT 4 (350 lf)                                                                 |                                         |                         |                   |          |
| Feature Category |                                                                               | (# Stable)<br>Performing as<br>Intended | Total # per<br>As-built | Total<br>unstable | % Stable |
| Riffles          | Present?                                                                      | N/A                                     | N/A                     | N/A               |          |
|                  | Armor Stable (no displacement)?                                               | N/A                                     | N/A                     | N/A               |          |
|                  | Facet Grade appears stable?                                                   | N/A                                     | N/A                     | N/A               |          |
|                  | Minimal evidence of embedding/fining? Length Appropriate?                     | N/A<br>N/A                              | N/A<br>N/A              | N/A<br>N/A        |          |
| Pools            | Present(not subject to severe agrad.)?                                        | 3                                       | N/A                     | N/A               |          |
|                  | Length Appropriate?                                                           | YES                                     | N/A                     | N/A               |          |
| Thalweg          | Upstream of meander bend (run) centering?  Downstream of meander bend (glide) | YES                                     | N/A                     | N/A               |          |
|                  | centering?                                                                    | YES                                     | N/A                     | N/A               |          |
| Bed General      | General channel bed aggradation (bar formation)                               | NONE                                    | N/A                     | N/A               |          |
|                  | Channel bed degradation - down or head-cutting?                               | NONE                                    | N/A                     | N/A               |          |
| Vanes            | Free of back or arm scour?                                                    | N/A                                     | N/A                     | N/A               |          |
| (Entire project) | Free of structural failure?                                                   | N/A                                     | N/A                     | N/A               |          |

# **APPENDIX** E. Structures and Problem Areas

Photo Log